

Table of Contents

	v of the Ground Water Reporting Program	
	of the Ground Water Reporting Program	
	Fround Water Summary Report	
	ing Methods	
	mer	
Reporti	ing Format	1
Ground \	Water Extraction Data Summary	2-3
Summa	ary of Methods Used for Extraction Reporting	3
	xtraction Data by Hydrologic Subarea and Type of Use	
Urban	Extraction Data by City or Area	3
Agricultu	ural Water Conservation Plans	4-6
Water an	nd Land Use Form	6-9
	tural Water Pumped	
Hrban W	ater Conservation Plans	10
Orban W	ater Conservation Flans	10
	List of Tables	
	List of Tables	
Table 1.	Total extraction data by reporting method	2
Table 1.	Total extraction data by reporting method	
Table 3.	Urban extraction data by riydrologic subarea and type of use	
Table 3.	1993 – net acre distribution of irrigation methods by crop type based on N/A% companies reported	
Table 4.	2004 – net acre distribution of irrigation methods by crop type based on 90% companies reported	
Table 6.	2005 – net acre distribution of irrigation methods by crop type based on 90% companies reported	
Table 7.	2006 – net acre distribution of irrigation methods by crop type based on 97% companies reported	
Table 7.	Agricultural "Best Management Practices" implemented from 1999 through 2006	
Table 9.	Urban "Best Management Practices" implemented from 2002 through 2006	
	List of Figures	
Figure 1.	Agency Zones and Hydrologic Subareas	2
Figure 2.	Percentage by volume of methods used for extraction reporting	3
	Percentage of total extractions by hydrologic subarea	
	Percentage representation of urban extraction by city or area	
	Types of irrigation methods used in the Salinas Valley based on companies reported	
	Top Ten Best Management Practices (BMPs) utilized in 2006 by net acres	
	2005 reported acre-feet by crop type & hydrologic subarea	
	2005 reported net acres by crop type & hydrologic subarea	
Figure 9.	2005 reported acre-feet/acre by crop type & hydrologic subarea	9

Overview of the Ground Water Reporting Program

History of the Ground Water Reporting Program

In February 1993, the Monterey County Board of Supervisors adopted Ordinance No. 3663 that required water suppliers within Zones 2, 2A, and 2B to report water-use information for ground water extraction facilities (wells) and service connections. Monterey County Ordinance No. 3717, which replaced Ordinance No. 3663, was adopted in October 1993; it modified certain other requirements in the previous ordinance but kept the ground water extraction reporting requirements in place for wells with a discharge pipe having an inside diameter of at least three inches.

Monterey County Water Resources Agency (Agency) has collected ground water extraction data from well operators for water reporting years beginning November 1 and ending October 31, starting with the 1992-1993 water-reporting year. The information received from the over 300 well operators in the above-referenced zones of the Salinas Valley is compiled by the Ground Water Extraction Management System (GEMS) portion of the Water Resources Agency Information Management System (WRAIMS), a relational database maintained by the Agency. The intent of the ground water extraction reporting program is to measure and document the amount of ground water extracted from Zones 2, 2A, and 2B of the Salinas Valley Ground Water Basin each year.

Since 1991, the Agency has required the annual submittal of Agricultural Water Conservation Plans (Ordinance 3851), which outline the best management practices that are adopted each year by growers in the Salinas Valley. In 1996, an ordinance was passed that requires the filing of Urban Water Conservation Plans (Ordinance 3886). Developed as the urban counterpart of the agricultural water conservation plans, this program provides an overview of per capita water use and the best management practices being implemented by urban water purveyors as conservation measures.

2005 Ground Water Summary Report

The purpose of this report is to summarize the data collected in February 2006 from the following annual reporting programs: *Ground Water Extraction Reporting (agricultural and urban), Water Conservation Plans (agricultural and urban), and Water and Land Use Information (agricultural)*. The agricultural data from the ground water extraction reporting program covers the water-reporting year of **November 1, 2004, through October 31, 2005**; the *urban* data covers **calendar year 2005**. The agricultural and urban water conservation plans adopted for 2006 are also summarized. This report is intended to present a snapshot of current water extraction within the Salinas Valley, including agricultural and urban water conservation improvements that are being implemented to reduce the total amount of water pumped. It is not the purpose of this report to thoroughly analyze the factors that contribute to increases or decreases in pumping.

Reporting Methods

The ground water extraction reporting program allows well operators to report water extractions by one of three different measuring methods: water flowmeter, electrical meter, or hour meter (timer) data. Ordinance 3717 requires regular pump efficiency tests for each well to ensure the accuracy of the data reported. The summary of ground water extractions presented in this report is compiled from data generated from all three reporting methods.

Disclaimer

While the Agency has made every effort to ensure the accuracy of the data presented in this report, it should be noted that the data is submitted by the individual reporting parties and is not verified by Agency staff. In addition, since so many factors can affect the calculations, it is understood that no reporting method is 100 percent accurate. The Agency maintains strict quality assurance in the compilation, standardization, and entry of the data received.

The Agency received Ground Water Extraction Reports from approximately ninety-eight percent (98%) of the 1780 wells in the Salinas Valley for the 2005 water-reporting year. Agricultural and Urban Water Conservation Plan submittals for 2006 were ninety-seven percent (97%) and ninety-three percent (93%), respectively.

Reporting Format

Ground water extraction data is presented in this report by measurement in acre-feet. One acre-foot is equal to 325,851 gallons.

Ground Water Extraction Data Summary

The Agency has designated hydrologic subareas of the Salinas Valley Ground Water Basin whose boundaries are drawn where discernible changes occur in the hydrogeologic conditions. Also outlined on the map are the Agency Zones of the Valley, showing areas required to report. These boundaries are shown in Figure 1.

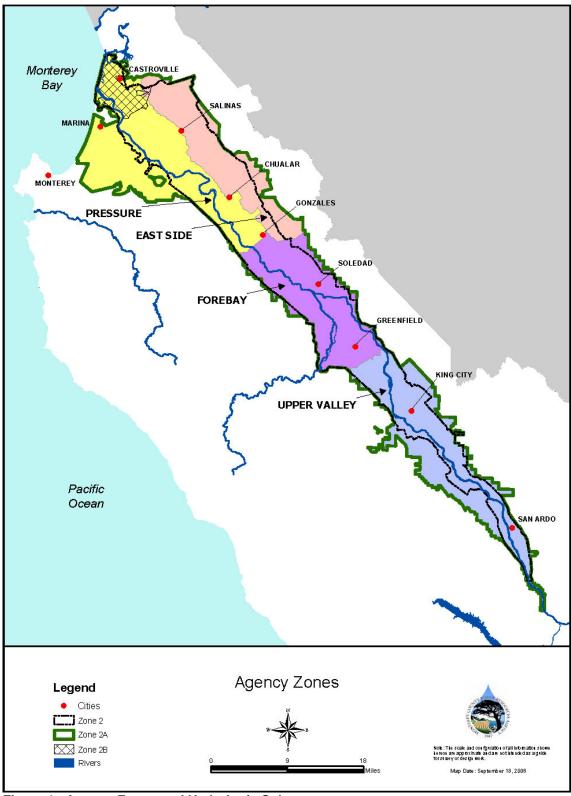


Figure 1. Agency Zones and Hydrologic Subareas

Ground Water Extraction Data Summary (continued)

Summary of Methods Used for Extraction Reporting

The distribution of methods used for ground water extraction reporting (agricultural and urban) for the 2005 water-reporting year is shown in Table 1; a percentage distribution by volume is shown in Figure 2.

Table 1. Total extraction data by reporting method

	7 1	0
Reporting	Acre-Feet per	Wells per
Method	Reporting Method	Reporting Method
Water Flowmeter	332,825	1,254
Electrical Meter	148,581	461
Hour Meter	12,640	33
Total (2005)	494,046	1,748
Average ('95-'05)	506,519	1,676

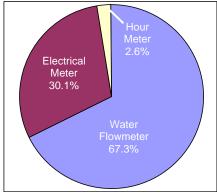


Figure 2. Percentage by volume of methods used for extraction reporting

Total Extraction Data by Hydrologic Subarea and Type of Use

The total ground water extractions for the 2005 water-reporting year are summarized by hydrologic subarea, type of use (agricultural and urban in Table 2), and percentage (Figure 3).

Table 2. Total extraction data by hydrologic subarea and type of use

Subarea	Agricultural Pumping (acre-feet)	Urban Pumping (acre-feet)	Total Pumping (acre-feet)
Pressure	97,028	21,344	118,372
East Side	80,100	16,028	96,128
Forebay	139,951	8,571	148,522
Upper Valley	126,488	4,536	131,024
Total	443,567	50,479	494,046

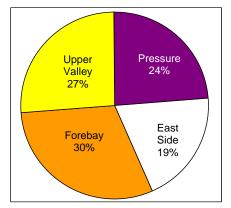


Figure 3. Percentage of total extractions by hydrologic subarea

Urban Extraction Data by City or Area

The total ground water extractions attributed to urban (residential, commercial/institutional, industrial, and governmental) pumping for the 2005 water-reporting year are summarized by city or area in Table 3. Figure 4 is a graphic representation of each city or area's percentage of the total urban pumping for 2005.

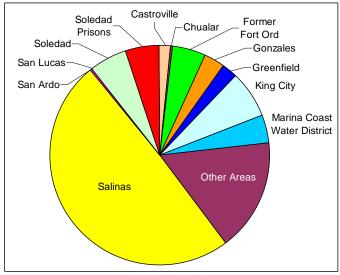


Figure 4. Percentage representation of urban extraction by city or area

Table 3. Urban extraction data by city or area

City or Area	Urban	Percentage
City of Area	Pumping (AF)	of Total
Castroville	867	1.7%
Chualar	135	0.3%
Former Fort Ord	2,508	5.0%
Gonzales	1,526	3.0%
Greenfield	1,183	2.3%
King City	3,403	6.7%
Marina Coast WD	2,201	4.4%
Other Areas	8,250	16.3%
Salinas	24,918	49.4%
San Ardo	117	0.2%
San Lucas	94	0.2%
Soledad	2,709	5.4%
Soledad Prisons	2,568	5.1%
Total	50,479	100.0%

Agricultural Water Conservation Plans

The Agricultural Water Conservation Plans include net irrigated acreage, irrigation method, and crop category. This information is forecasted and indicates what the grower plans to do in the upcoming year. It reflects the changing trends in irrigation methods in the Salinas Valley. Tables 4, 5, 6, and 7 show the distribution of irrigation methods by crop type for 1993, 2004, 2005, and 2006, respectively.

Table 4. 1993 - net acre distribution of irrigation methods by crop type based on N/A¹% companies reported

		Sprinkler	Hand Move	Solid Set	Linear			
1993	Furrow	& Furrow	Sprinklers	Sprinklers	Move	Drip	Other ²	Total
Vegetables	2,349	84,060	30,764	6,607	3,827	3,682	0	131,289
Field Crops	575	2,173	2,236	90	50	48	0	5,172
Berries	1	0	0	0	0	4,158	0	4,159
Grapes	261	0	0	13,347	0	15,976	0	29,584
Tree Crops	0	0	122	251	0	1,216	10	1,599
Forage	41	202	1,327	0	48	0	189	1,807
Unirrigated		•	•	•		•		N/A
Total	3,227	86,435	34,449	20,295	3,925	25,080	199	173,610

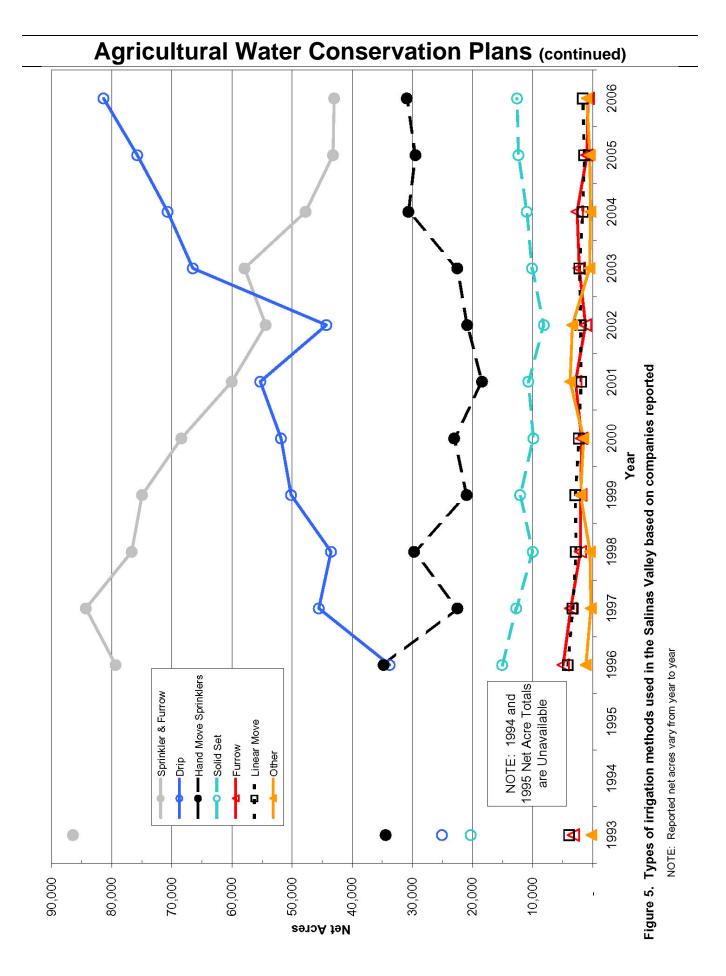
Table 5. 2004 - net acre distribution of irrigation methods by crop type based on 90% companies reported

		Sprinkler	Hand Move	Solid Set	Linear	·	Ť	
2004	Furrow	& Furrow	Sprinklers	Sprinklers	Move	Drip	Other ²	Total
Vegetables	2,001	46,325	28,221	7,641	1,659	29,800	350	115,997
Field Crops	286	1,178	1,774	1,187	0	2,298	0	6,723
Berries	290	233	113	0	0	4,303	0	4,939
Grapes	8	0	300	1,653	0	32,526	0	34,487
Tree Crops	0	0	0	456	0	1,778	0	2,234
Forage	18	30	261	26	0	16	7	358
Unirrigated								3,029
Total	2,603	47,766	30,669	10,963	1,659	70,721	357	167,767

Table 6. 2005 - net acre distribution of irrigation methods by crop type based on 90% companies reported

•		Sprinkler	Hand Move	Solid Set	Linear	-	<u> </u>	
2005	Furrow	& Furrow	Sprinklers	Sprinklers	Move	Drip	Other ²	Total
Vegetables	704	42,783	26,540	9,396	1,383	35,850	355	117,011
Field Crops	225	367	377	547	0	0	115	1,631
Berries	0	4	0	0	0	4,662	0	4,666
Grapes	8	0	0	1,970	0	31,999	0	33,977
Tree Crops	0	0	2,338	441	0	3,252	0	6,031
Forage	18	40	214	15	0	0	7	294
Unirrigated								4,381
Total	955	43,194	29,469	12,369	1,383	75,763	477	167,991

Table 7. 2006 - net acre distribution of irrigation methods by crop type based on 97% companies reported


		Sprinkler	Hand Move	Solid Set	Linear			
2006	Furrow	& Furrow	Sprinklers	Sprinklers	Move	Drip	Other ²	Total
Vegetables	590	42,577	27,873	9,553	1,640	37,368	732	120,333
Field Crops	156	447	270	85	0	206	78	1,242
Berries	0	0	0	0	0	5,312	0	5,312
Grapes	0	0	0	1,947	0	35,229	0	37,176
Tree Crops	0	0	2,338	441	0	3,042	0	5,821
Forage	0	0	362	15	0	0	97	474
Other Type ³	18	0	64	554	0	222	68	926
Unirrigated								3,254
Total	764	43,024	30,907	12,595	1,640	81,379	975	174,538

¹ "N/A" - % companies reported are unavailable for 1993

NOTE: Percent companies reported varies from year to year

² "Other" may include an irrigation system not listed here or a different combination of systems

³ "Other Type" are for other crop types not included, i.e. cactus, flower bulbs, etc.

Agricultural Water Conservation Plans (continued)

Since 1991, Salinas Valley growers have submitted Agricultural Water Conservation Plans to the Agency. Table 8 shows the number of acres, by year, for selected "Best Management Practices" (water conservation measures) which have been implemented over the past eight years.

Table 8. Agricultural "Best Management Practices" implemented from 1999 through 2006

Best Management				Net A	cres			
Practices (BMPs)	1999	2000	2001	2002	2003	2004	2005	2006
12 Months Set Aside	1,332	1,396	2,363	3,940	2,742	6,012	3,337	2,557
Summer Fallow	3,657	3,511	1,532	2,652	2,278	2,025	2,535	5,797
Flowmeters	124,963	127,454	125,624	106,739	124,342	133,349	131,711	133,148
Time Clock/Pressure Switch	130,863	130,298	124,427	116,062	133,405	140,167	138,707	142,184
Soil Moisture Sensors	62,357	58,975	56,148	45,927	50,460	49,328	48,824	50,130
Pre-Irrigation Reduction	89,454	93,733	82,791	80,501	90,878	93,094	88,576	96,082
Reduced Sprinkler Spacing	75,884	74,245	68,963	61,607	76,691	82,292	81,068	87,159
Sprinkler Improvements	98,409	95,356	89,505	85,302	110,194	102,041	105,544	102,642
Off-Wind Irrigation	102,433	101,828	93,387	91,706	111,278	111,862	117,254	113,867
Leakage Reduction	114,882	106,917	95,304	95,217	121,890	118,125	115,117	116,662
Micro Irrigation System	48,562	55,292	55,261	44,078	58,742	62,796	68,861	74,829
Surge Flow Irrigation	18,468	15,796	10,677	7,084	8,538	6,708	7,180	7,117
Tailwater Return System	23,597	23,773	26,236	25,263	23,914	27,653	23,097	23,968
Land Leveling/Grading	58,679	61,001	54,319	56,361	69,420	71,682	69,673	71,873

¹ Due to unique crop rotations, it is difficult to account for each BMP used on total Crop Acres; therefore Net Acres were used.

Note: For Urban Water Conservation Plan information, see page 10.

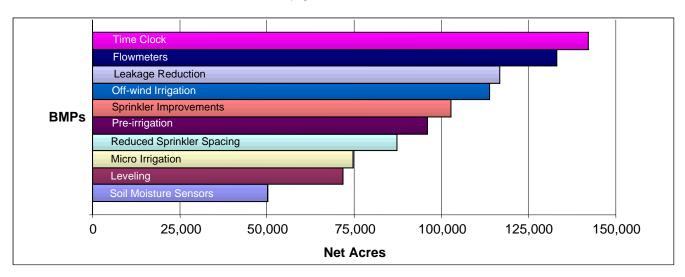
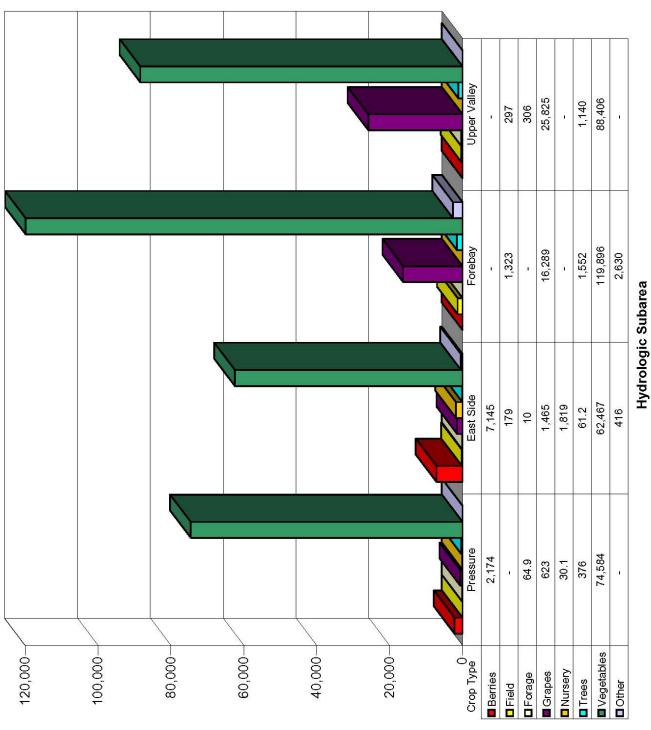


Figure 6. Top Ten Best Management Practices (BMPs) utilized in 2006 by net acres


Water and Land Use Form

Agricultural Water Pumped

The following three figures present the agricultural water pumped (acre-feet/acre) by hydrologic subarea and crop type. The data was compiled using the reported acreage and water pumped from the 2004-2005 Water and Land Use Form. The data accounts for all crop types reported, including nurseries, and all reporting methods: Water Flowmeter, Electrical Meter, and Hour Meter.

Changing weather patterns, variable soils, and crop types affect the amount of water needed for efficient irrigation. Even during a normal rain year, pumping rates will vary from one area to another and crop types will vary depending on economic demand.

Water and Land Use Form (continued)

Reported Acre-Feet

Figure 7. 2005 reported acre-feet by crop type & hydrologic subarea

Water and Land Use Form (continued)

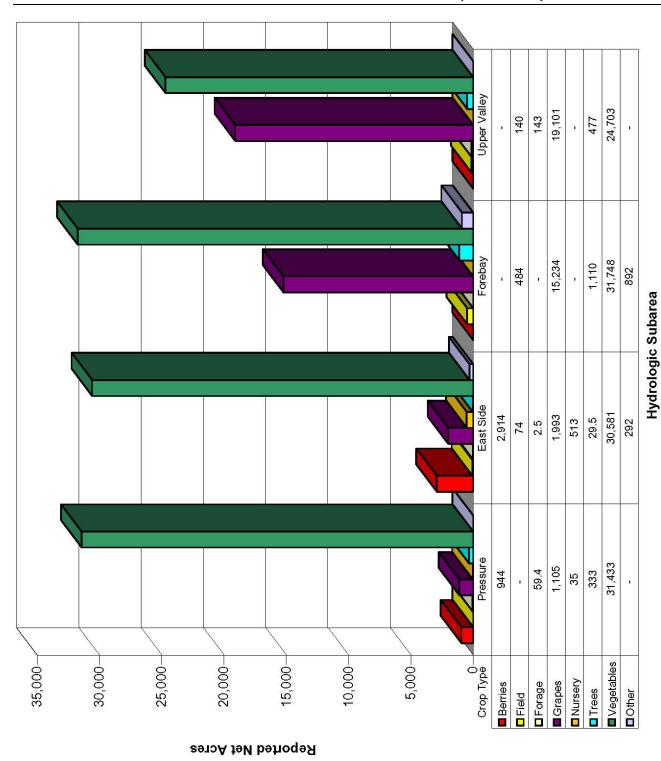


Figure 8. 2005 reported net acres by crop type & hydrologic subarea

Water and Land Use Form (continued)

Figure 9. 2005 reported acre-feet/acre by crop type & hydrologic subarea

Urban Water Conservation Plans

Since 1996, the Agency has been collecting data for the Urban Water Conservation Plan program. Table 9 shows the implementation of "Best Management Practices" (water conservation measures) for the past five years, as a percentage of total acreage reported. It is important to note that, while all of the listed practices apply to "large" water systems (200 or more customer connections), not all apply to "small" water systems (between 15 and 199 customer connections). The practices that apply *only* to large systems are printed in **bold** below.

Table 9. Urban "Best Management Practices" implemented from 2002 through 2006

Best Management Practices	2002	2003	2004	2005	2006
Provide speakers to community groups and media	94%	77%	71%	42%	70%
Use paid and public service advertising	90%	77%	74%	45%	70%
Provide conservation information in bill inserts	82%	56%	65%	52%	76%
Provide individual historical water use information on water bills	84%	88%	77%	72%	81%
Coordinate with other entities in regional efforts to promote water conservation					
practices	84%	85%	91%	68%	92%
Work with school districts to provide educational materials and					
instructional assistance	94%	54%	33%	46%	72%
Implement requirements that all new connections be metered and billed by					
volume of use	91%	90%	95%	76%	93%
Establish a program to retrofit any existing unmetered connections and bill by					
volume of use	55%	69%	49%	45%	57%
Offer free interior and exterior water audits to identify water conservation					
opportunities	55%	75%	58%	96%	92%
Provide incentives to achieve water conservation by way of free					
conservation fixtures (showerheads, hose end timers) and/or conservation					
"adjustments" to water bills	89%	73%	35%	70%	68%
Enforcement and support of water conserving plumbing fixture standards,					
including requirement for ultra low flush toilets in all new construction	95%	95%	95%	94%	94%
Support of State/Federal legislation prohibiting sale of toilets using more than 1.6					
gallons per flush	85%	89%	96%	95%	90%
Program to retrofit existing toilets to reduce flush volume (with displacement					
devices)	45%	42%	56%	54%	62%
Program to encourage replacement of existing toilets with ultra low flush					
(through rebates, incentives, etc.)	87%	71%	71%	33%	71%
Provide guidelines, information, and/or incentives for installation of more efficient					
landscapes and water-saving practices	64%	87%	93%	86%	83%
Encourage local nurseries to promote use of low water use plants	82%	39%	3%	53%	59%
Develop and implement landscape water conservation ordinances					
pursuant to the "Water Conservation in Landscaping Act"	65%	56%	51%	36%	35%
Identify and contact top industrial, commercial, and/or institutional					
customers directly; offer and encourage water audits to identify					
conservation opportunities	56%	53%	4%	67%	68%
Review proposed water uses for new commercial and industrial water					
service, and make recommendations for improving efficiency before					
completion of building permit process	69%	80%	10%	73%	73%
Complete an audit of water distribution system at least every three years as					
prescribed by American Water Works Association	57%	20%	76%	58%	64%
Perform distribution system leak detection and repair whenever the audit reveals					
that it would be cost effective	90%	21%	77%	60%	71%
Advise customers when it appears possible that leaks exist on customer's side of					
water meter	91%	93%	96%	94%	94%
Identify irrigators of large landscapes (3 acres or more) and offer					
landscape audits to determine conservation opportunities	60%	52%	4%	29%	30%
Provide conservation training, information, and incentives necessary to					
encourage use of conservation practices	56%	55%	8%	34%	32%
Encourage and promote the elimination of non-conserving pricing and adoption					
of conservation pricing policies	87%	43%	20%	24%	30%
Implementation of conservation pricing policies	62%	43%	21%	26%	29%
Enact and enforce measures prohibiting water waste as specified in Agency					
Ordinance No. 3932 or as subsequently amended, and encourage the efficient					
use of water	86%	71%	83%	51%	46%
Implement and/or support programs for the treatment and reuse of					
		42%	37%		40%

This page left blank intentionally.

Monterey County Board of Supervisors

Fernando Armenta	District #1
Louis Calcagno	District #2
Simon Salinas	District #3
Jerry Smith	District #4
Dave Potter, Chair	District #5

Monterey County Water Resources Agency Board of Directors

Mary Mecartney
Warren Church
Roger Moitoso
Paul E. Martin
Leo Poppoff
District #3
District #4
District #4
District #5

Stephen P. Collins, Vice Chair Grower-Shipper Vegetable Association

Richard Morgantini, Chair Farm Bureau

Roy Alsop, Jr. Agricultural Advisory Committee

Richard Ortiz Mayor Select Committee

Monterey County Water Resources Agency Executive Management

Curtis V. Weeks, General Manager William L. Phillips, Deputy General Manager Robert Johnson, Chief of Water Resources Planning and Management

Summary Report Team

Kathleen Thomasberg, Program Manager II Jess Barreras, Hydrologist Carla James, Water Resources Technician Teresa Campa, Engineering Aide II

For more information, contact:

Monterey County Water Resources Agency

893 Blanco Circle, Salinas

Mailing address: P.O. Box 930, Salinas, CA 93902-0930

> 831.755.4860 831.424.7935 (fax)

www.mcwra.co.monterey.ca.us

