September Ranch Subdivision Project Praft REIR	
	Appendix E: Traffic Impact Stud
	Appendix L. Hame impact Stud

Final

Traffic Impact Study for the **September Ranch Subdivision**

In Monterey County

October 5, 2004

Final

Traffic Impact Study for the September Ranch Subdivision

In Monterey County

October 5, 2004

Prepared by: TJKM Transportation Consultants 5960 Inglewood Drive, Suite 100 Pleasanton CA 94588-8535

Tel: 925.463.0611 Fax: 925.463.3690

TABLE OF CONTENTS

INTRODUCTION	1
Introduction	1
Project Description	1
STUDY INTERSECTIONS	1
Summary	4
EXISTING CONDITIONS	5
EXISTING ROADWAY SYSTEM.	5
LEVEL OF SERVICE ANALYSIS METHODOLOGY	
Signalized Intersections	
Unsignalized Intersections	
IMPACT CRITERIA	
RESULTS OF LEVEL OF SERVICE ANALYSIS (EXISTING)	
EXISTING PLUS PROPOSED PROJECT	12
Project Trip Generation.	
PROJECT TRIP DISTRIBUTION	
RESULTS OF LEVEL OF SERVICE ANALYSIS (EXISTING + PROJECT)	
EXISTING+APPROVED+PENDING+PROPOSED PROJECT CONDITIONS	17
METHODOLOGY	
RESULTS OF LEVEL OF SERVICE ANALYSIS (EXISTING + PROJECT + APPROVED + PENDING)	21
CUMULATIVE CONDITIONS	24
Methodology	24
RESULTS OF LEVEL OF SERVICE ANALYSIS (CUMULATIVE)	
RECOMMENDED LANE GEOMETRY FOR CARMEL VALLEY ROAD/BROOKDALE DRIVE/PROJECT DRIVEWAY SIGHT DISTANCE	
ROADWAY SEGMENT ANALYSIS	29
SUMMARY OF MITIGATION	21
Existing ConditionsProposed September Ranch Mitigation Measures	
Cumulative (Year 2025) Mitigation Measures	
STUDY REFERENCES.	
TJKM PERSONNELPERSONS CONSULTED	
REFERENCES	
TCA DAC. (CDS)	
APPENDIX A – LEVEL OF SERVICE METHODOLOGY	
APPENDIX B - EXISTING TRAFFIC COUNTS	
APPENDIX C - LEVEL OF SERVICE WORKSHEETS:	
EXISTING CONDITIONS Appropriate Description Workship To Separate Worksh	
APPENDIX D – LEVEL OF SERVICE WORKSHEETS: EXISTING + PROJECT CONDITIONS	
APPENDIX E – LEVEL OF SERVICE WORKSHEETS:	
EXISTING + PROJECT + APPROVED + PENDING	
APPENDIX F - LEVEL OF SERVICE WORKSHEETS:	

CUMULATIVE (YEAR 2025) CONDITIONS APPENDIX G – SIGNAL WARRANT ANALYSIS APPENDIX H – TURNING WARRANT ANALYSIS

LIST OF TABLES

TABLE I: EXISTING LEVELS OF SERVICE	8
TABLE II: PROJECT TRIP GENERATION	
TABLE III: EXISTING + PROJECT LEVELS OF SERVICE	14
TABLE IV: TRIP GENERATION OF APPROVED AND PENDING PROJECTS	
TABLE V: COMBINED TRIP DISTRIBUTIONS OF APPROVED/PENDING PROJECTS	20
TABLE VI: EXISTING + PROPOSED PROJECT + APPROVED + PENDING LEVELS OF SERVICE	
TABLE VII: CLIMILI ATIVE LEVELS OF SERVICE	26

LIST OF FIGURES

FIGURE 1 - VICINITY MAP	2
FIGURE 2 – PROJECT SITE PLAN	
FIGURE 3 – LANE CONFIGURATIONS AT STUDY INTERSECTIONS	
FIGURE 4 - EXISTING PEAK HOUR TURNING MOVEMENT VOLUMES	10
FIGURE 5 – PROJECT TRIP DISTRIBUTION	13
FIGURE 6 – EXISTING + PROJECT P.M PEAK HOUR TURNING MOVEMENT VOLUMES	15
$Figure\ 7-Existing+Approved+Pending+Proposed\ Project\ Trip\ Generation\ and\ Assignment\$	18
FIGURE 8 – EXISTING + APPROVED + PENDING + PROJECT TURNING MOVEMENT VOLUMES	22
FIGURE 9 – CUMULATIVE TURNING MOVEMENT VOLUMES	25

INTRODUCTION

Introduction

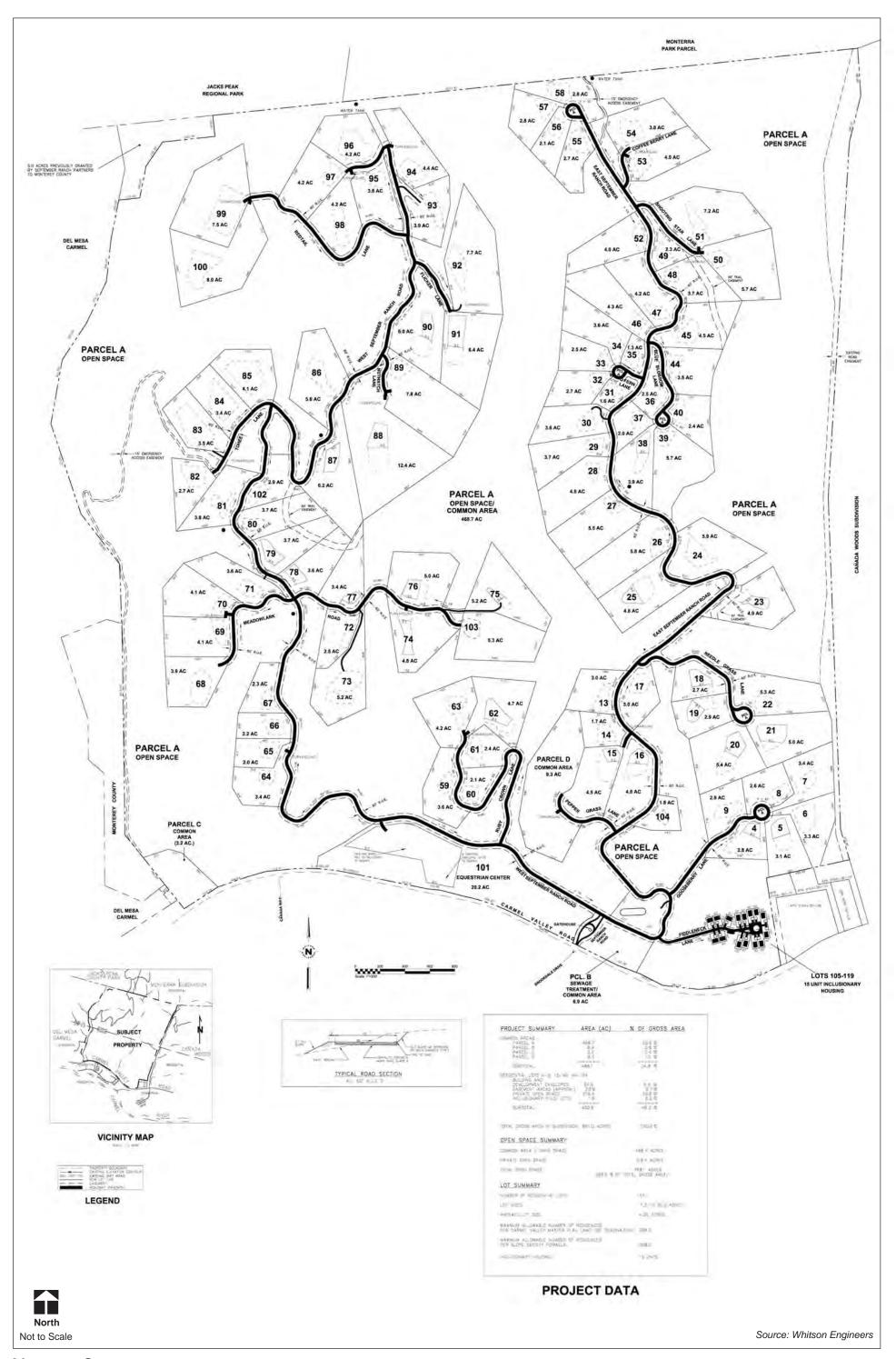
This report presents the results of TJKM's traffic impact analysis of the proposed September Ranch Subdivision, to be located on Carmel Valley Road in Monterey County. The purpose of this traffic study is to evaluate the potential traffic impacts, identify short-term and long-term roadway and circulation needs, determine potential mitigation measures, and identify any critical traffic issues that should be addressed in the on-going planning process.

Project Description

The proposed project consists of 95 single-family detached homes and 15 inclusionary (affordable) housing units on a vacant lot. The project site is located on the north side of Carmel Valley Road, across street from Brookdale Drive in Carmel Valley (see Figure 1). The project will have one access road, called September Ranch Road, which will connect and form the fourth (north) leg at the existing Carmel Valley Road/Brookdale Drive intersection. There is an existing driveway located in the vicinity of the proposed Equestrian Center; upon the completion of the project, this driveway will serve as an emergency vehicle access (EVA). Figure 2 shows the proposed project site plan.


Study Intersections

The study focused on evaluating conditions at ten study intersections that may potentially be impacted by the proposed project (see Figure 1):


- 1. Highway 1/Carpenter Street
- 2. Highway 1/Ocean Avenue/Carmel Hills Drive
- 3. Highway 1/Carmel Valley Road
- 4. Highway 1/Rio Road
- 5. Carmel Valley Road/Carmel Rancho Boulevard/Carmel Knolls Drive
- 6. Carmel Valley Road/Rancho San Carlos Road
- 7. Carmel Valley Road/Brookdale Drive/Project Driveway
- 8. Carmel Valley Road/Dorris Drive
- 9. Carmel Valley Road/Laureles Grade
- 10. Highway 68/Laureles Grade

Four analysis scenarios were evaluated as part of this study:

- Existing Conditions Current traffic volumes and roadway conditions
- Existing plus Project Conditions Existing turning movement volumes with the addition of the proposed project trips
- Existing plus Project plus Approved plus Pending Conditions Current traffic volumes with the addition of future traffic generated by the proposed project, as well as trips generated by nearby approved and pending projects

Monterey County September Ranch Vicinity Map

Monterey County

 Cumulative (Year 2025) Conditions – Year 2025 buildout traffic volumes in accordance with the general plan of the Monterey County with the proposed project trips.

Summary

Under the Existing conditions, the following five study intersections currently operate at unacceptable service levels:

- Highway 1/Carpenter Street (signalized)
- Highway 1/Ocean Avenue/Carmel Hills Drive (signalized)
- Carmel Valley Road/Brookdale Drive (STOP controlled)
- Carmel Valley Road/Dorris Drive (STOP controlled)
- Carmel Valley Road/Laureles Grade (STOP controlled)

Signal modifications would mitigate the congestion problem at Highway 1/Carpenter Street. The Highway 1/Ocean Avenue/Carmel Hills Drive intersection requires widening of the eastbound and westbound approaches to include one left-turn lane, one shared left-turn/through lane, and one right-turn lane. The remaining three intersections require signalization.

Under the Existing plus Project conditions, the same five study intersections are expected to continue to operate unacceptably, and the same measures identified under Existing conditions are expected to be sufficient to mitigate operational issues at these intersections.

The intersections of Highway 1/Carpenter Street and Highway 1/Ocean Avenue/Carmel Hills Drive are expected to continue to operate unacceptably under the Existing plus Project plus Approved plus Pending and the Cumulative Year 2025 scenarios. They would require signal modifications and intersection widening as identified herein. Similarly, the intersections of Carmel Valley Road/Brookdale Drive, Carmel Valley Road/Dorris Drive, and Carmel Valley Road/Laureles Grade are expected to continue to operate unacceptably. Signalization would mitigate the operational problems at these intersections.

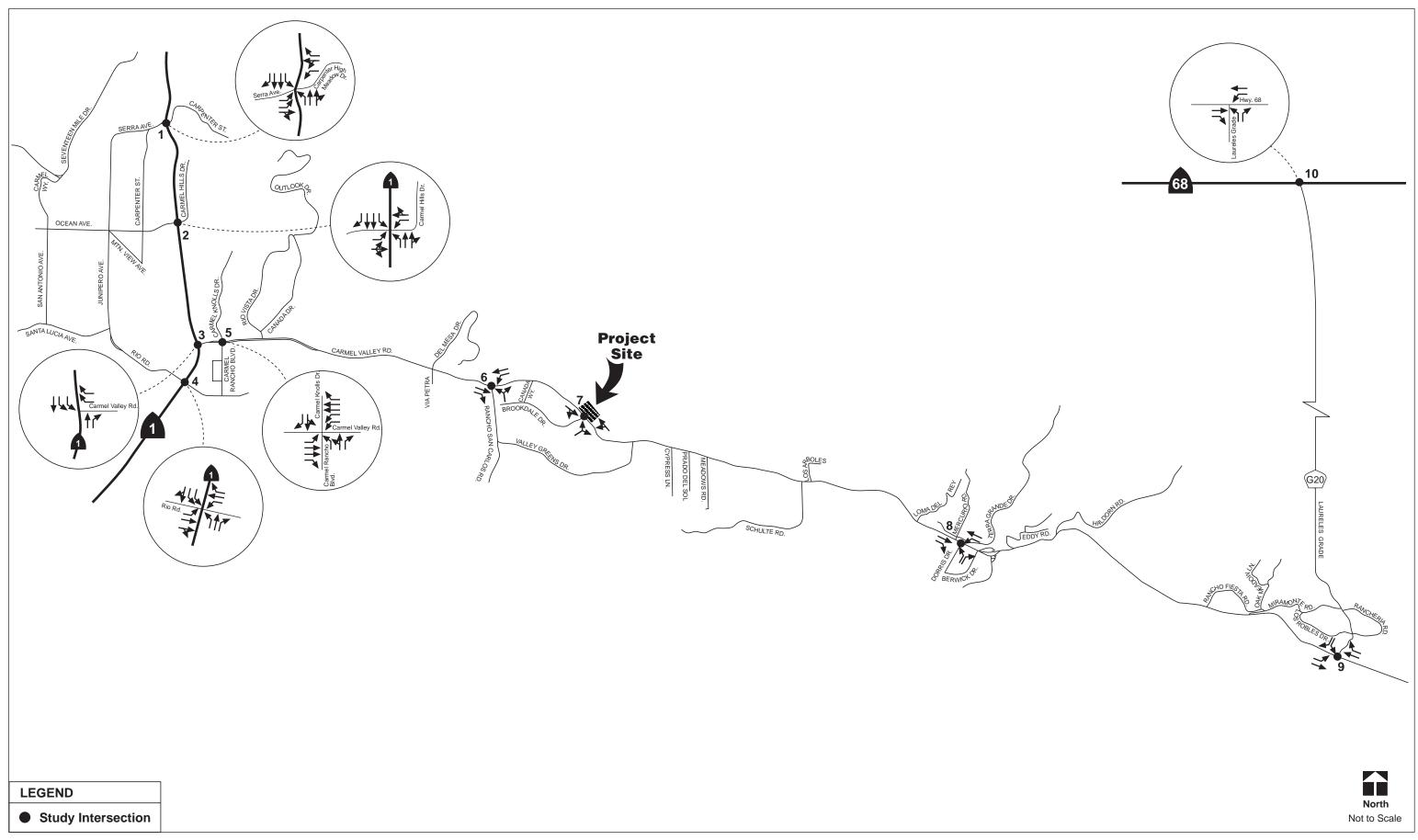
The operating conditions of the Highway 1/Rio Road and Highway 68/Laureles Grade intersections are expected to worsen to an unacceptable service level under Cumulative Year 2025 scenario. Recommended mitigation for these intersections is provided herein.

EXISTING CONDITIONS

Existing Roadway System

Access to the project site will be via *Carmel Valley Road*, which is a major two-lane rural highway in Carmel Valley. It extends easterly from Highway 1, providing access to various types of developments including residential, commercial, schools and golf courses. Carmel Valley Road begins at Highway One and ends at Arroyo Seco Road. The major cross streets include Highway 1, Carmel Rancho Boulevard, and Laureles Grade. The posted speed limit on Carmel Valley Road varies between 45 miles per hour (mph) and 55 mph. Class II bike lanes exist along Carmel Valley Road between Carmel Rancho Boulevard and Dorris Drive.

Highway 1 is one of the major highways in Monterey County. It runs in a north-south direction, and provides regional access to Monterey Bay and San Francisco Bay to the north, and Big Sur and San Luis Obispo to the south. Traffic conditions on Highway 1 in Carmel Valley are often congested with long delays during the peak hours.


Carmel Rancho Boulevard is a four-lane north-south arterial that provides access to the major commercial/service area located south of Carmel Valley Road.

Laureles Grade is a two-lane rural highway in Monterey County. It runs in the north-south direction, and connects Carmel Valley Road to Highway 68, which runs through the City of Salinas.

The study focused on the following ten intersections:

- 1. Highway 1/Carpenter Street
- 2. Highway 1/Ocean Avenue/Carmel Hills Drive
- 3. Highway 1/Carmel Valley Road
- 4. Highway 1/Rio Road
- 5. Carmel Valley Road/Carmel Rancho Boulevard/Carmel Knolls Drive
- 6. Carmel Valley Road/Rancho San Carlos Road
- 7. Carmel Valley Road/Brookdale Drive/Project Driveway
- 8. Carmel Valley Road/Dorris Drive
- 9. Carmel Valley Road/Laureles Grade
- 10. Highway 68/Laureles Grade

Figure 3 illustrates the existing lane geometry of the ten study intersections. All four study intersections located on Highway 1 as well as the intersections of Carmel Valley Road/Carmel Rancho Boulevard, Carmel Valley Road/Rancho San Carlos Road and Highway 68/Laureles Grade are controlled by traffic signals. The remaining three intersections on Carmel Valley Road are STOP-controlled on the minor approach.

Lane Configurations at Study Intersections

Figure TJKM

Level of Service Analysis Methodology

Level of service is a qualitative measure that describes operational conditions as they relate to the traffic stream and perceptions by motorists and passengers. The level of service generally describes these conditions in terms of such factors as speed and travel time, delays, freedom to maneuver, traffic interruptions, comfort, convenience and safety. The operational levels of service (LOS) are given letter designations from "A" to "F," with "A" representing the best operating conditions (free-flow) and "F" the worst (severely congested).

Signalized Intersections

The operating condition at the signalized study intersections were evaluated using the 2000 Highway Capacity Manual Operations Method as incorporated into the standard traffic engineering software package TRAFFIX. Peak hour intersection conditions are reported as average delay per vehicle with corresponding levels of service for the intersection as a whole. LOS "A" indicates free flow conditions with little or no delay, while LOS "F" indicates jammed conditions with excessive delay and long back-ups. The methodology is described in detail in Appendix A.

Unsignalized Intersections

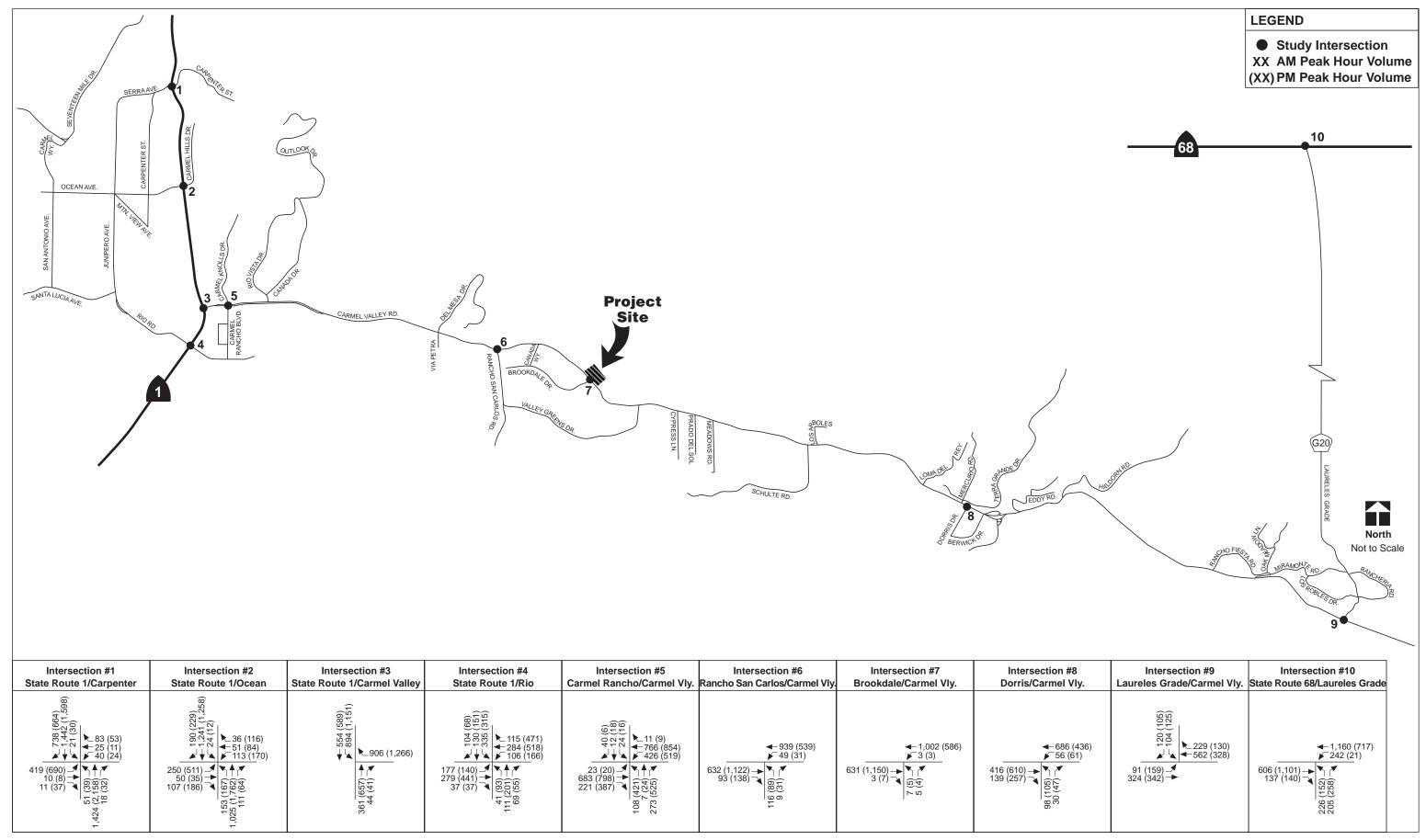
The operating conditions at the study intersections with the minor approaches STOP controlled were evaluated using the 2000 Highway Capacity Manual (HCM) Unsignalized Method, also contained in the standard software package TRAFFIX. Peak hour intersection conditions are reported as delay per vehicle with corresponding LOS for each of its minor movements. The methods rank level of service on an "A" through "F" scale similar to that used for signalized intersections, and also uses average delay in seconds as its measure of effectiveness. The methodologies for unsignalized intersections are also presented in Appendix A.

Impact Criteria

All four intersections on Highway 1 and the intersection of Highway 68/Laureles Grade are under Caltrans jurisdiction. The other five study intersections, all located on Carmel Valley Road, belong to Monterey County. Both Caltrans and the County consider a peak hour LOS "C" to be the limit of acceptable service for the intersections under its jurisdiction. Therefore, the study intersections that fall below LOS C are considered impacted and should be considered for mitigation.

Results of Level of Service Analysis (Existing)

Turning movement counts at all study intersections were collected in early December of 2002, except for Highway 68/Laureles Grade, which was counted in June of 2003. The detailed turning count data are provided in Appendix B. Figure 4 illustrates the existing peak hour turning movement volumes at the study intersections. The intersection lane geometry is previously shown in Figure 3. Table I summarizes the results of the intersection analysis under Existing Conditions. The detailed LOS calculations are contained in Appendix C.


TABLE I: EXISTING LEVELS OF SERVICE

			A.M.	Peak	P.M.	Peak
	Intersection	Control	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
1	Highway 1/Carpenter St	Signal	22.9	С	39.6	D
	- Utilizing 'overlap' for SB and WB RT	Signal	16.8	В	33.4	С
2	Highway 1/Ocean Ave/Carmel Hills Dr	Signal	24.3	С	79.5	E
	- Widening EB and WB approaches	Signal	17.6	В	33.1	С
3	Highway 1/Carmel Valley Rd	Signal	10.3	В	26.6	С
4	Highway 1/Rio Rd	Signal	22.0	С	24.4	С
5	Carmel Valley Rd/Carmel Rancho Blvd	Signal	15.0	В	22.5	С
6	Carmel Valley Rd/Rancho San Carlos Rd	Signal	11.5	В	9.6	А
7	Carmel Valley Rd/Brookdale Dr	1-Way STOP	- (57.5)	- (F)	- (43.0)	- (E)
	- Installing a traffic signal	Signal	4.9	Α	5.6	Α
8	Carmel Valley Rd/Dorris Dr	1-Way STOP	- (92.3)	- (F)	- (62.4)	- (F)
	- Installing a traffic signal	Signal	7.8	Α	8.0	Α
9	Carmel Valley Rd/Laureles Grade	1-Way STOP	- (41.4)	- (E)	(36.4)	- (E)
	- Installing a traffic signal	Signal	10.8	В	12.5	В
10	Highway 68/Laurelres Grade	Signal	20.2	С	17.4	В

Notes:

- 1. Analysis is performed using the software TRAFFIX based on the 2000 Highway Capacity Manual methodologies.
- 2. Delay and Level of Service (LOS) are for the worst approach when the intersection is controlled by one/two way stop control (*i.e.*, intersections #7,8 and 9).
- 3. Delay and Level of Service (LOS) are the average for all approaches when intersection is controlled by an all-way stop or traffic signals.

Under Existing conditions, Highway 1/Carmel Valley Road (Intersection 3), Highway 1/Rio Road (Int. 4), Carmel Valley Road/Carmel Rancho Boulevard (Int. 5), Carmel Valley Road/Rancho San Carlos Road (Int. 6), and Highway 68/Laurelres Grade (Int. 10) all operate acceptably. The following five intersections operate at unacceptable service levels.

Existing Turning Movement Volumes

The intersection of Highway 1/Carpenter Street (Int. 1) currently operates at LOS D during the p.m. peak hour. The recommended mitigation for this intersection includes the utilization of the 'overlap phasing' to have southbound right-turns on Highway 1 go at the same time as the eastbound Carpenter Street left-turns, and the utilization of 'overlap phasing' to have westbound right-turns on Carpenter Street go at the same time as the southbound Highway 1 left-turns. With this mitigation, the intersection operating condition is expected to improve to an acceptable level.

The intersection of Highway 1/Ocean Avenue/Carmel Hills Drive (Int. 2) currently operates unacceptably at LOS E during the p.m. peak hour. Widening the eastbound Ocean Avenue and westbound approaches to have one exclusive left-turn lane (Exists EB & WB), one shared left-turn/through lane, and one exclusive right-turn lane is expected to improve the intersection operating condition to an acceptable level. Note that the peak traffic conditions at this intersection are related to school traffic, and therefore occur between 2:15 and 3:30 p.m.

The Brookdale approach Drive (STOP controlled) to Carmel Valley Road (Int. 7) currently operates unacceptably during both the a.m. and the p.m. peak hours. Installation of a traffic signal would mitigate the operational LOS issues at this location. However, this intersection does not meet the Caltrans' peak hour signal warrant because of the extremely low volumes on Brookdale Drive (see Appendix G). As part of the Carmel Valley Road Improvements, the County plans to install left-turn channelization on the westbound approach at this intersection. Given the small amount of Westbound Left-turns, this improvement would do little to improve the LOS.

The Northbound Dorris Drive approach to Carmel Valley Road (Int. 8) currently operates at LOS "F" during both a.m. and the p.m. peak hours. This intersection is expected to operate acceptably with signalization. Existing traffic volumes at this intersection currently meet the Caltrans' peak hour signal warrant.

The Southbound Laureles Grade approach to Carmel Valley Road (Int. 9) currently operates unacceptably during both a.m. and the p.m. peak hours. Installing a traffic signal would improve the operating condition to an acceptable level "B" during both peak hours. This intersection also meets the Caltrans' peak hour signal warrant under existing traffic conditions. The signal warrant analysis is presented in Appendix G.

The County of Monterey, at the request of the Transportation Agency for Monterey County (TAMC) and Caltrans, currently collects two traffic impact fees for Highway 1 improvements. One fee is for short-term improvements, based on the number of PM peak trips using Highway 1 just north of Carmel Valley Road. The other fee is for long-term capacity improvement on Highway 1, and is based on the number of additional project-related daily trips on Highway 1.

The Carmel Valley Master Plan (CVMP) traffic impacts fees are different, and do not relate to Highway 1. The CVMP fees fund improvements on County roads, according to the adopted list of improvements.

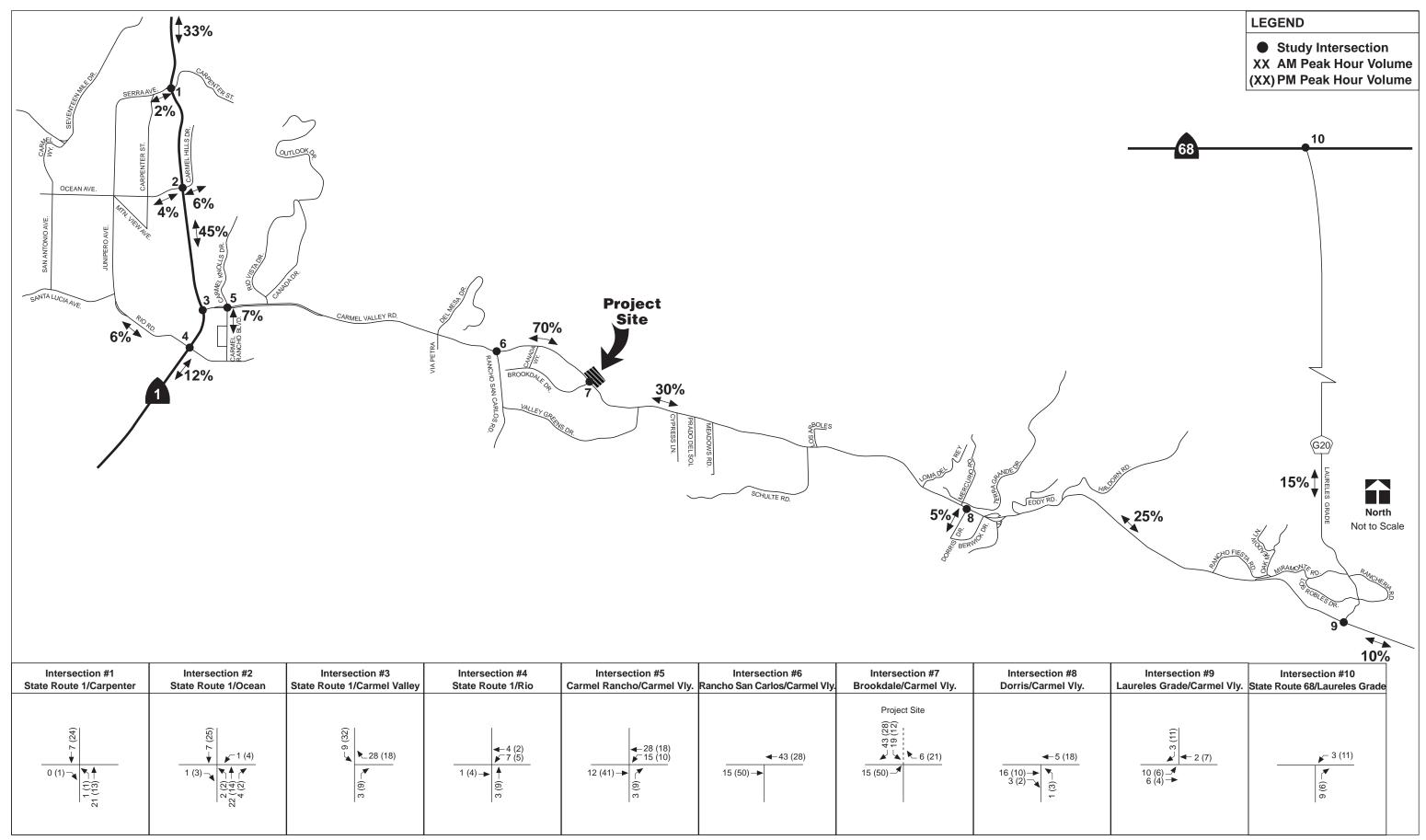
EXISTING PLUS PROPOSED PROJECT

This Scenario is similar to the Existing Conditions, but with the addition of traffic from the proposed September Ranch Subdivision.

Project Trip Generation

The proposed development consists of a total of 110 new single-family (SF) detached homes. The project trip generation was estimated based on trip rates provided in *Trip Generation*, 6th Edition, published by the Institute of Transportation Engineers (ITE) in 1997. The proposed project is expected to generate approximately 1,053 daily trips, with 83 trips occurring during the a.m. peak hour and 111 trips during the p.m. peak hour. The trip generation estimates are shown in Table II.

TABLE II: PROJECT TRIP GENERATION


Use	Size	Da	aily		A.M.	Peak I	Hour		P.M. Peak Hour				
OSE	Size	Rate	Trips	Rate	%In:Out	ln	Out	Total	Rate	%In:Out	In	Out	Total
SF Homes	110 Units	9.57	1,053	0.75	25:75	21	62	83	1.01	64:36	71	40	111

Source: ITE Trip Generation Manual, 6th Edition.

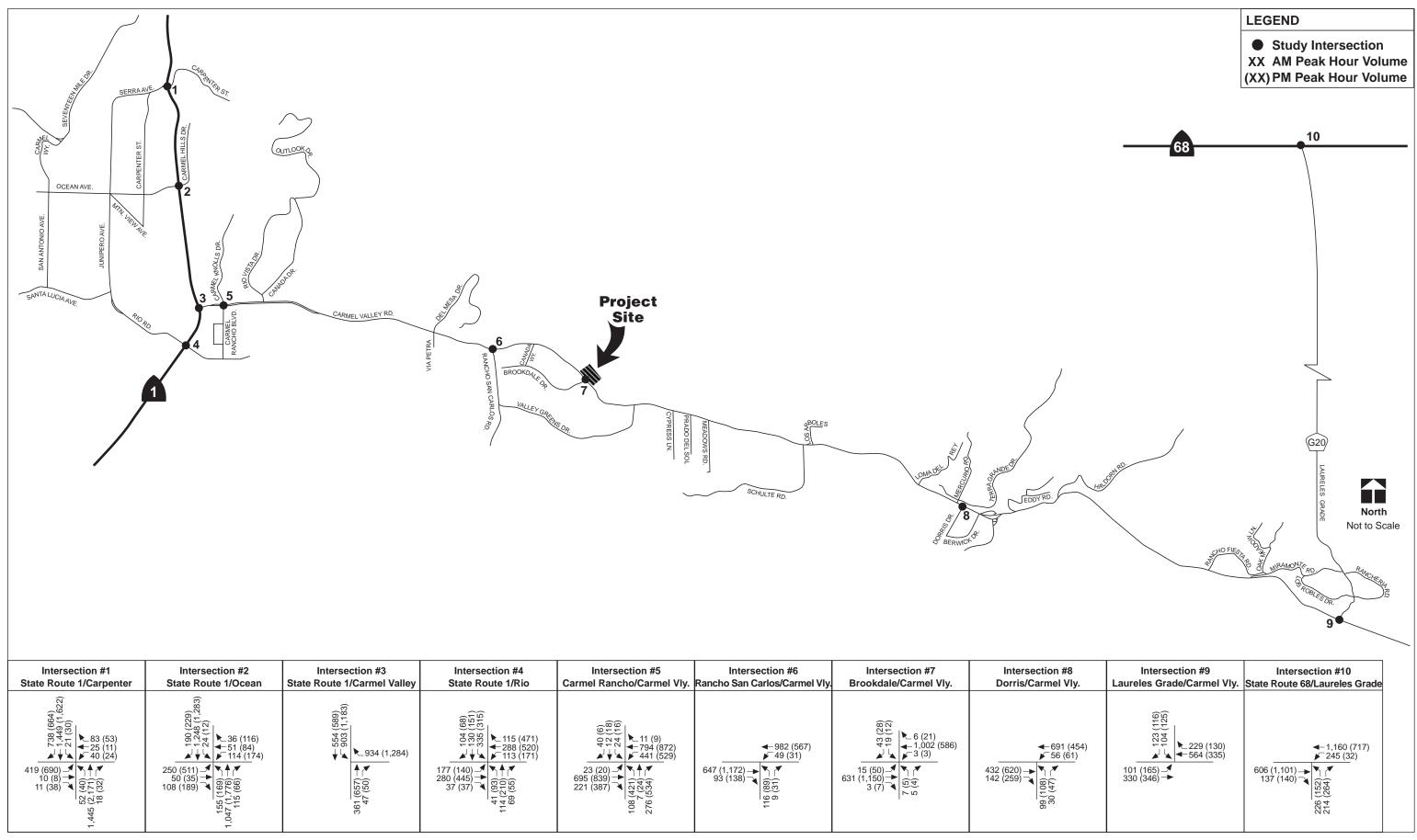
Project Trip Distribution

The trip distribution assumptions for the September Ranch Subdivision were developed based on existing travel patterns, knowledge of the study area and the input from County staff. Traffic is expected to travel to and from the site according to the distribution assumptions described below. Distribution and assignment of project-generated trips are also shown on Figure 5.

- 33% will travel to/from the north via Highway 1
- 15% will travel to/from the north via Laureles Grade
- 12% will travel to/from the south via Highway 1
- 10% will travel to/from the east via Carmel Valley Road
- 7% will travel to/from the service/commercial development on Carmel Rancho Boulevard
- 6% will travel to/from Carmel High School
- 6% will travel to/from the west via Rio Road
- 5% will travel to/from the service/commercial development on Dorris Drive
- 4% will travel to/from the west via Ocean Avenue
- 2% will travel to/from the west via Carpenter Street

Proposed Project Trip Distribution and Assignment

Results of Level of Service Analysis (Existing + Project)


Project traffic was added to the Existing volumes to obtain the expected turning movement volumes for the Existing plus Project scenario. See Figure 6 for the forecasted Existing plus Project peak hour turning volumes. The LOS analysis results are summarized in Table III. Detailed calculation sheets are contained in Appendix D.

Under the Existing plus Project scenario, the same five intersections as Existing conditions are expected to operate at below standard LOS. It should be noted that the operating conditions at these intersections are expected to improve to an acceptable level with the same mitigation identified under the Existing conditions.

TABLE III: EXISTING + PROJECT LEVELS OF SERVICE

			A.M.	Peak	P.M. Peak		
	Intersection	Control	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
1	Highway 1/Carpenter St	Signal	23.0	С	40.2	D	
	- Utilizing 'overlap' for SB and WB RT	Signal	17.0	В	34.0	С	
2	Highway 1/Ocean Ave/Carmel Hills Dr	Signal	24.6	С	81.9	F	
	- Widening EB and WB approaches	Signal	17.7	В	34.0	С	
3	Highway 1/Carmel Valley Rd	Signal	10.5	В	26.9	С	
4	Highway 1/Rio Rd	Signal	22.1	С	24.7	С	
5	Carmel Valley Rd/Carmel Rancho Blvd	Signal	15.0	В	23.0	С	
6	Carmel Valley Rd/Rancho San Carlos Rd	Signal	12.7	В	10.6	В	
7	Carmel Valley Rd/Brookdale Dr	1-Way STOP	- (120+)	- (F)	- (80.8)	- (F)	
	- Installing a traffic signal	Signal	12.7	В	12.1	В	
8	Carmel Valley Rd/Dorris Dr	1-Way STOP	- (103.7)	- (F)	- (74.2)	- (F)	
	- Installing a traffic signal	Signal	7.9	Α	8.1	А	
9	Carmel Valley Rd/Laureles Grade	1-Way STOP	- (45.8)	- (E)	(38.4)	- (E)	
	- Installing a traffic signal	Signal	11.1	В	12.7	В	
10	Highway 68/Laurelres Grade	Signal	20.4	С	18.6	В	

The intersection of Highway 1/Carpenter Street (Int. 1) is expected to operate unacceptably at LOS D during the p.m. peak hour. The recommended mitigation for this intersection includes the utilization of 'overlap phasing' to have westbound right-turns on Carpenter Street go at the same time as the southbound Highway 1 left-turns, and to have southbound right-turns on Highway 1 go simultaneously with the eastbound Carpenter Street left-turns (same mitigation as for Existing conditions).

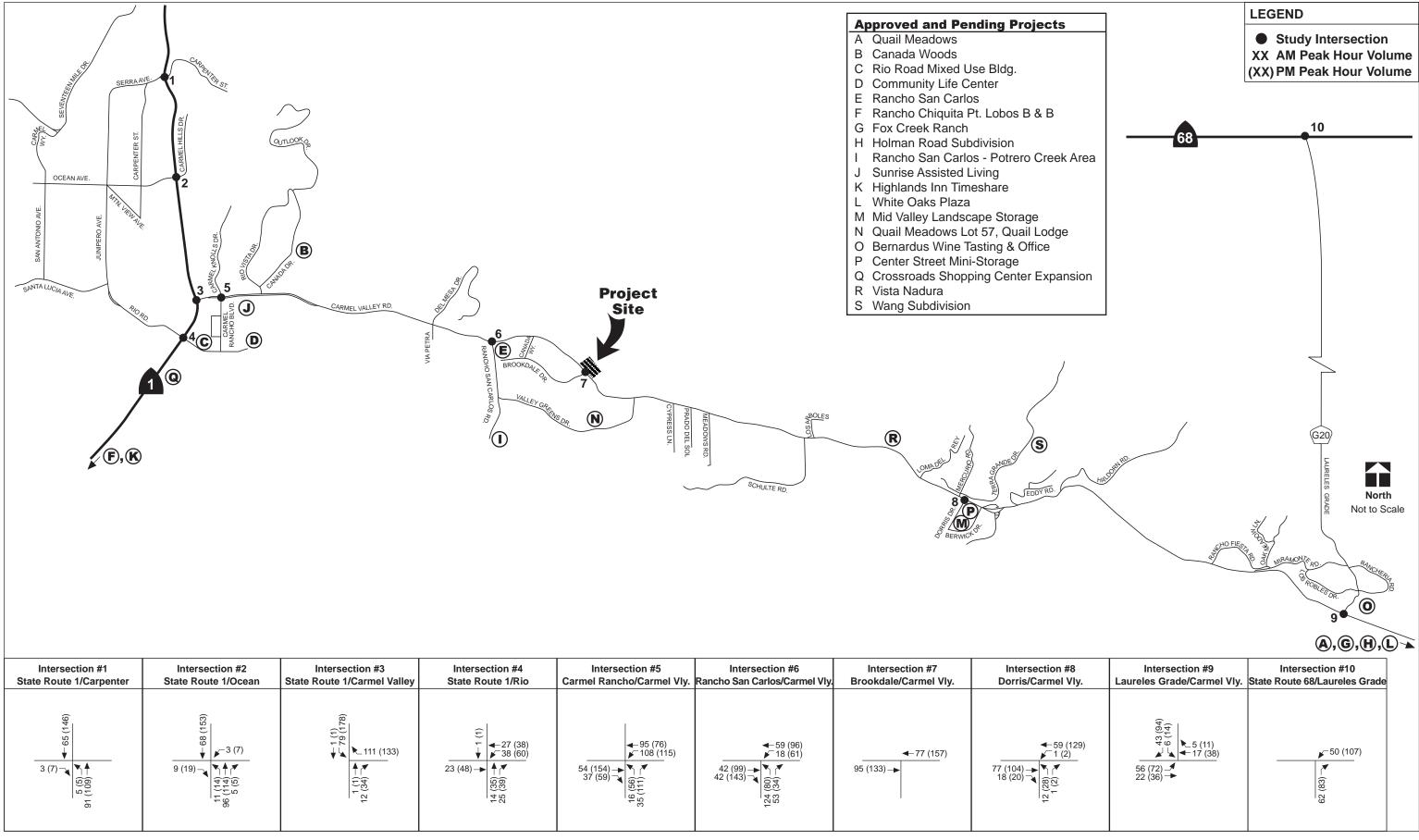
Existing + Proposed Project Turning Movement Volumes

Figure

The intersection of Highway 1/Ocean Avenue/Carmel Hills Drive (Int. 2) is expected to continue to operate unacceptably. Widening the eastbound and westbound approaches to have one exclusive left-turn lane, one shared left-turn/through lane, and one exclusive right-turn lane (same mitigation as for Existing scenario) is expected to improve the intersection operating condition to an acceptable level. The project applicant should pay for its fair share of traffic impact fee to TAMC to help improve these two intersections(Intersection 1 and 2) along Highway 1.

The Carmel Valley Road/Brookdale Drive intersection (Int. 7) will become a four-legged intersection under Existing plus Project conditions. Its minor approaches are expected to operate unacceptably during both peak hours. With installation of a traffic signal, the intersection is expected to operate acceptably. However, the intersection is not expected to meet All-way Stop control nor signal warrants under this scenario. See Appendix G for the signal warrant analysis. As previously mentioned, the County plans to install left-turn channelization on the westbound approach at this intersection; however, the LOS analysis indicates that the intersection minor approach is still expected to operate unacceptably with left-turn channelization alone.

The minor approaches on Carmel Valley Road/Dorris Drive (Int. 8) and Carmel Valley Road/Laureles Grade (Int. 9) are expected to continue to operate unacceptably during both a.m. and the p.m. peak hours. Installing traffic signals (same mitigation as for Existing conditions) would mitigate the operational LOS issues at these locations. Both intersections are expected to meet the Caltran's peak hour signal warrant. The project applicant should pay its fair share of CVTIF to help improve (i.e., signalize) these two intersections along Carmel Valley Road.


EXISTING+APPROVED+PENDING+PROPOSED PROJECT CONDITIONS

Methodology

The peak hour turning movement volumes for this scenario were developed based on information of approved and pending/planned projects in the vicinity of the project site. Based on consultation with County staff, there are 19 approved and pending projects as listed in Table IV. The locations of these projects are shown on Figure 7.

Trip generation rates were obtained from the previous completed traffic study of corresponding projects. These projects are expected to generate a total of 8,727 daily trips, 537 a.m. peak hour trips, and 905 p.m. peak hour trips in the study area. The trip generation estimations of the projects are presented in Table IV.

The trips generated by the approved and pending projects were distributed and assigned to the street network based on existing traffic patterns, previous traffic studies and from discussions with County staff. Table V summarizes the combined trip distributions of approved and pending projects under this scenario.

Figure

Table IV: Trip Generation of Approved/Pending Projects

		Daily		and the second s		AM PEAK		and the second	***************	۵.	PM PEAK	to delete and a page dead of the second	0,010,110,000,000,100
ADDOOVED AND DENDING PROJECTS	SIZE	Trip	Daily	Trip	In:Out	٤	Out	Total	Trip	In:Out	드	Ont	Total
		Rate	Trips	Rate	Split	Trips	Trips	Trips	Rate	- 1	Trips	Trips	Trips
A. Quail Meadows ²	mixed use		463			10	4	14			16	14	30
B. Canada Woods											8	,	
- Single Family Units	44 sfu	9.57	421	0.75	25:75	∞	25	33	1.01	64:36	8	9	† †
- Home Improvement Center	18 Ksf	35.05	631	1.48	54:46	15	12	27	2.87	47:53	24	28	52
C. Rio Road Mixed Use Building ³												;	(
eoj#(O =	12 Ksf	23.5	282	13%	89:11	33	4.	37	14%	17:83	7	32	က္က
- Senior Condos	28 d.u.	5.9	165	%2	17:83	2	10	12	%6	66:34	0	roʻ.	15
O Commingly Life Contact	30 Ksf		677			32	0	32			09	25	82
T Danaha Can Canada	286 sfu	9.57	2.737	0.75	25:75	54	161	215	1.01	64:36	185	104	289
E. Kancio San Canos	10 rooms	10.19	102			က	4	~			က	က	9
	10 sfu	9.57	96	0.75	25:75	. 4	9	8	1.01	64:36	9	4	10
	3 sfi	9.57	29	0.75	25:75	0	2	2	1.01	64:36	8	_	ന
H. Holmail Road Subdivision	29 sfr.	9.57	278	0.75	25:75	ဖ	16	22	1.01	64:36	19	9	29
L Kancilo dari Carios - Foundro Creek Area	54 units	1 73	112			9	7	13			80	ဖ	4
J. Sunrise Assisted Living	conversion): -	Ė			0	0	0			0	0	0
K. Highlands inn Timeshare	E 667 ca ft		272			. vc	· 8	8			-	Ţ	22
	0,000 eq.16.		7.7			6	·C	2			0	2	7
M. Mid Valley Landscape Storage			- 0			1 0	· C	i C			C	0	0
N. Quail Meadow Lot 57, Quail Lodge.*	esn paxim		o ;) <u> </u>	2	2			> <	· 	ır
O. Bernardus Wine Tasting & Office 13			Z			Z Z	¥ '	<u> </u>	0		t •		0
D Center Street Mini-Storage ¹⁴	267 units	0.28	75	0.02	50:50	က	2	5	0.03	20:20	4	4	0
O Canada Channing Center Expansion			2,163			20	33	83			110	120	230
G. Crossidada Gridel Cerrei Expansion	19 cfr	9.57	172			4	10	14	1.01	64:36	12	ဖွ	18
R. Vista Nadura	ole ol	9.57	38	0.75	25:75	•	Ø	്ന		64:36	က	1	4
S. Wang Subdivision	X		8 727	0.000		237	300	537	To the second		512	393	905
PROJECI IOIAL	had all degrees and de degree de distributed and de la constant de la constant de la constant de la constant de	A CONTRACTOR OF THE PARTY OF TH	1	Control of the Contro	grande i see no								

1. Trip Generation from Quail Meadows Study, Higgins Associates, 2001

2. Rio Road Mixed Use Trip Generation obtained from Rio Road Mixed Use Development Traffic Analysis Report, Higgins Associates, May 13, 1996

3. Community Life Center trip generation obtained from Community Life Center Traffic Study Update, Higgins Associates, August 31, 1998

4. Rancho San Carlos is under construction.

5. Rancho Chiquita Pt. Lobos B&B trip generation obtained from Rancho Chiquita Pt. Lobos Bed & Breakfast Traffic Study, Higgins Associates, November 25, 1997.

6. Trip generation is based on Single Family Use from Trip Generation, 6th Edition, Institute of Transportation Engineers, 1997

7. Sunrise Assisted Living trip generation is based on Sunrise Assisted Living Project Traffic and Parking Evaluation, Higgins Associates, October 10, 2002. With mitigation measures, no peak hour trip will be generated from this project.

8. The conversion of Highlands Hotels to Highlands Inn Timeshare will not generate any new trips, based on Higgins Associates study in 1997.

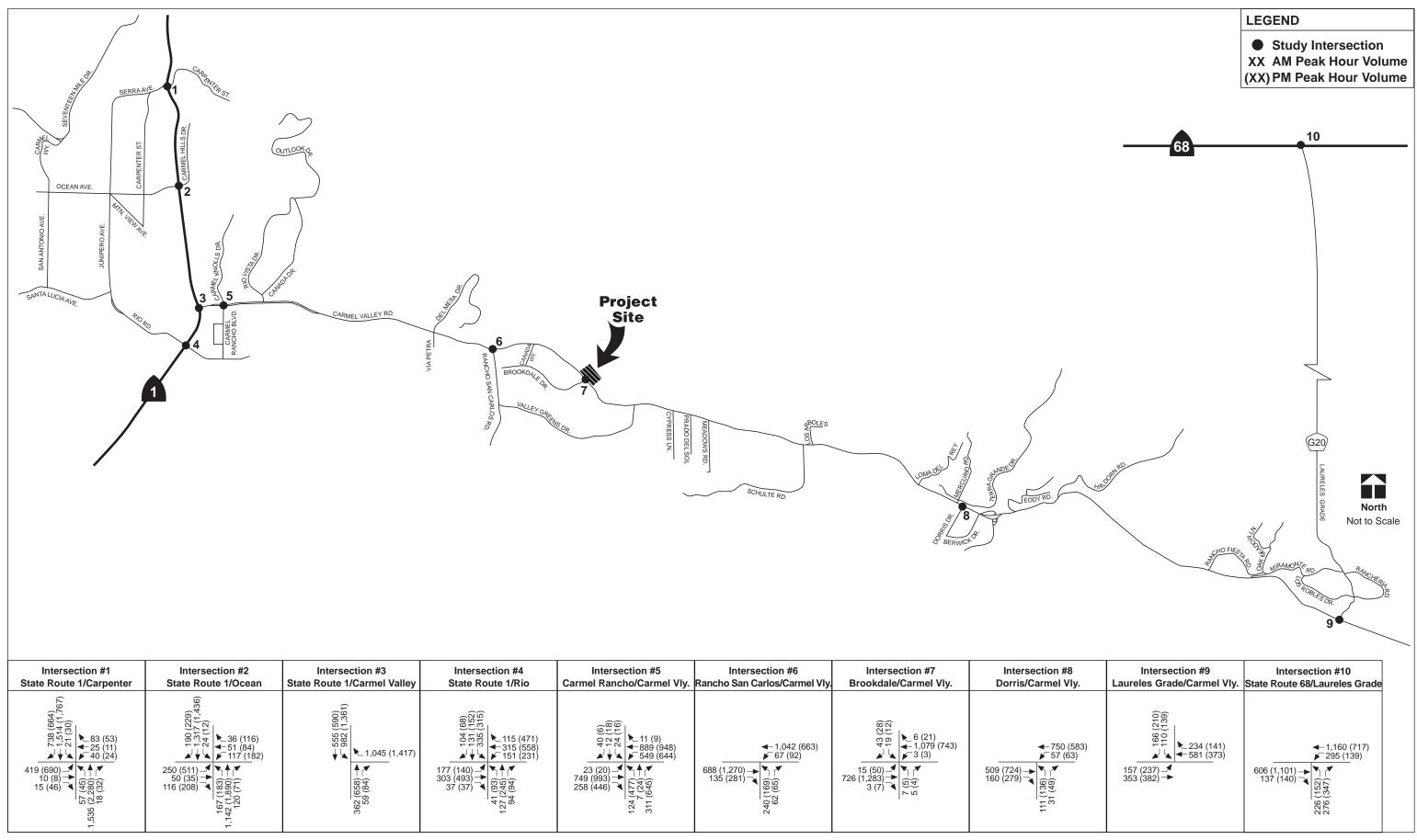
9. From Traffic Impact Analysis for White Oaks Plaza Expansion , Higgins Associates, May 2, 2001. 10. Based on Mid Valley Landscape Storage Traffic Analysis, Higgins Associates, May 15, 2001.

11. From Traffic Analysis for Quail Meadows Lot 57, Quail Lodge Expansion Modification, Higgins Associates, May 15, 2001.

12. From Bernardus Wine Tasting & Office Relocation Traffic Analysis Report , Higgins Associates, September 21, 1999.

13. Trip Generation is based on Mini Warehouse Use (code 151) from Trip Generation , 6th Edition, Institute of Transportation Engineers, 1997. 14. From Traffic Analysis for Wang Minor Subdivision , Higgins Associates, November 2002

TABLE V: COMBINED TRIP DISTRIBUTIONS OF APPROVED/PENDING PROJECTS


LOCATION	% of Assigned Trips in the AM Peak Hour	% of Assigned Trips in the PM Peak Hour
Highway 1 to the north towards Monterey	30%	29%
Carpenter Street west of Hwy 1	2%	1%
Ocean Street west of Hwy 1	4%	4%
Carmel High School	2%	1%
Rio Road west of Hwy 1	9%	9%
Highway 1 to the south towards Big Sur	14%	15%
Service and Commercial Developments in the vicinity of Carmel Rancho Boulevard	9%	9%
Service and Commercial developments in the vicinity of Dorris Drive Developments	5%	5%
Carmel Valley Road east of Laurels Grade	6%	7%
Laureles Grade to the north towards Salinas	19%	20%
TOTAL	100%	100%

Results of Level of Service Analysis (Existing + Project + Approved + Pending)

The approved and pending traffic (Figure 7) was added to the existing plus project turning volumes (Figure 6) to obtain the expected volumes for the scenario (shown on Figure 8). The intersection LOS analysis results are presented in Table VI. The detailed calculation sheets depicting cumulative traffic operations are contained in Appendix E.

TABLE VI: EXISTING + PROPOSED PROJECT + APPROVED + PENDING LEVELS OF SERVICE

			A.M.	Peak	P.M.	Peak
	Intersection	Control	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
1	Highway 1/Carpenter St	Signal	23.6	С	45.4	D
	- Utilizing 'overlap' for SB and WB RT, Modifying WB to have 1LT, 1TH, 1RT, Utilizing 'protected + permitted' on EB LT	Signal	16.3	В	32.1	С
2	Highway 1/Ocean Ave/Carmel Hills Dr	Signal	27.1	С	98.3	F
	- widening EB and WB approaches, installing a NB TH Lane	Signal	17.9	В	33.5	С
3	Highway 1/Carmel Valley Rd	Signal	10.9	В	31.0	С
4	Highway 1/Rio Rd	Signal	22.9	С	26.3	С
5	Carmel Valley Rd/Carmel Rancho Blvd	Signal	15.3	В	32.2	С
6	Carmel Valley Rd/Rancho San Carlos Rd	Signal	28.9	С	26.9	С
7	Carmel Valley Rd/Brookdale Dr	1-Way STOP	- (120+)	- (F)	- (120+)	- (F)
	- Installing a traffic signal	Signal	14.6	В	13.6	В
8	Carmel Valley Rd/Dorris Dr	1-Way STOP	- (1 20 +)	- (F)	- (120+)	- (F)
	- Installing a traffic signal	Signal	8.4	Α	9.4	Α
9	Carmel Valley Rd/Laureles Grade	1-Way STOP	(97.0)	- (F)	- (100.4)	- (F)
	- Installing a traffic signal	Signal	14.3	В	15.8	В
10	Highway 68/Laureles Grade	Signal	24.4	С	35.5	D
	- Utilizing 'overlap' for NB RT	Signal	18.1	В	23.9	С

Existing + Project + Approved + Pending Turning Movement Volumes

Figure

Under the Existing plus Proposed Project plus Approved plus Pending traffic conditions, four study intersections are expected to continue to operate acceptably. The following six study intersections (Same five intersections as Existing Conditions with the addition of Highway 68/Laureles Grade) are expected to operate unacceptably during the peak hours.

The intersection of Highway 1/Carpenter Street (Int. 1) is expected to continue to operate unacceptably during the p.m. peak hour. The recommended mitigation for this intersection includes 1) the utilization of the 'overlap phasing' to have westbound right-turns on Carpenter Street go at the same time as the southbound Highway 1 left-turns, 2) the utilization of 'overlap phasing' to have southbound right-turns on Highway 1 go simultaneously with the eastbound Carpenter Street left-turns, 3) modification of the westbound Carpenter Street approach convert the existing through/left-lane to only a through lane, 4) utilization of 'protected' phasing for the left-turn movement on the westbound Carpenter Street approach, and 5) utilization of 'protected+permitted' phasing for the left-turn movement on the eastbound Carpenter Street approach. With this mitigation, the intersection is expected to operate acceptably.

The intersection of Highway 1/Ocean Avenue/Carmel Hills Drive (Int. 2) is expected to continue to operate unacceptably. Widening the eastbound and westbound approaches to have one exclusive left-turn lane, one shared left-turn/through lane, and one exclusive right-turn lane, in conjunction with adding an exclusive through lane on northbound Highway 1 approach are expected to improve the intersection operating condition to an acceptable level. However, the California Coastal Act Section 30254 prohibits the widening of Highway 1 in the vicinity of the project area.

The Carmel Valley Road/Brookdale Drive intersection (Int. 7) is expected to operate unacceptably during both peak hours. With installation of a traffic signal (same mitigation as for Existing plus Project condition), the intersection is expected to operate acceptably. However, the intersection is not expected to meet the all-way STOP control nor signal warrants under this scenario. See Appendix G for the signal warrant analysis. As previously mentioned, the County has planned to install left-turn channelization on the westbound approach at this intersection; however, the LOS analysis indicates that the intersection minor approach is still expected to operate unacceptably with left-turn channelization alone.

The minor approach of Carmel Valley Road/Dorris Drive (Int. 8) and Carmel Valley Road/Laureles Grade (Int. 9) is expected to continue to operate unacceptably during both a.m. and the p.m. peak hours. Installing traffic signals (same mitigation as for Existing conditions) would mitigate the operational LOS issues at these locations. Both intersections are expected to meet the Caltran's peak hour signal warrant.

The intersection of Highway 68/Laureles Grade (Int. 10) is expected to operate unacceptably at LOS D during the p.m. peak hour. Utilizing 'overlap' phasing to have northbound right-turns on Laureles Grade go simultaneously with the westbound Highway 68 left-turns, is expected to mitigate the congestion problems at this location. However, the mitigation for Highway 68/Laureles Grade should be consistent with the operational improvements provided in the Highway 68 Action Plan for the intersection. Also, the traffic impact fee for funding the improvements in the Highway 68 Corridor was established to be \$9,750 per lot or PM peak trip (in 1995 dollars-Pasadera).

CUMULATIVE CONDITIONS

Methodology

This scenario evaluates traffic conditions of the build-out of the area planned by the Year 2025 in accordance with the Monterey County general plan. The cumulative a.m. and p.m. peak hour volumes were forecasted and provided by Association of Monterey Bay Governments (AMBAG) staff. Figure 9 illustrates the forecasted peak hour turning movement volumes for the cumulative Year 2025 conditions.

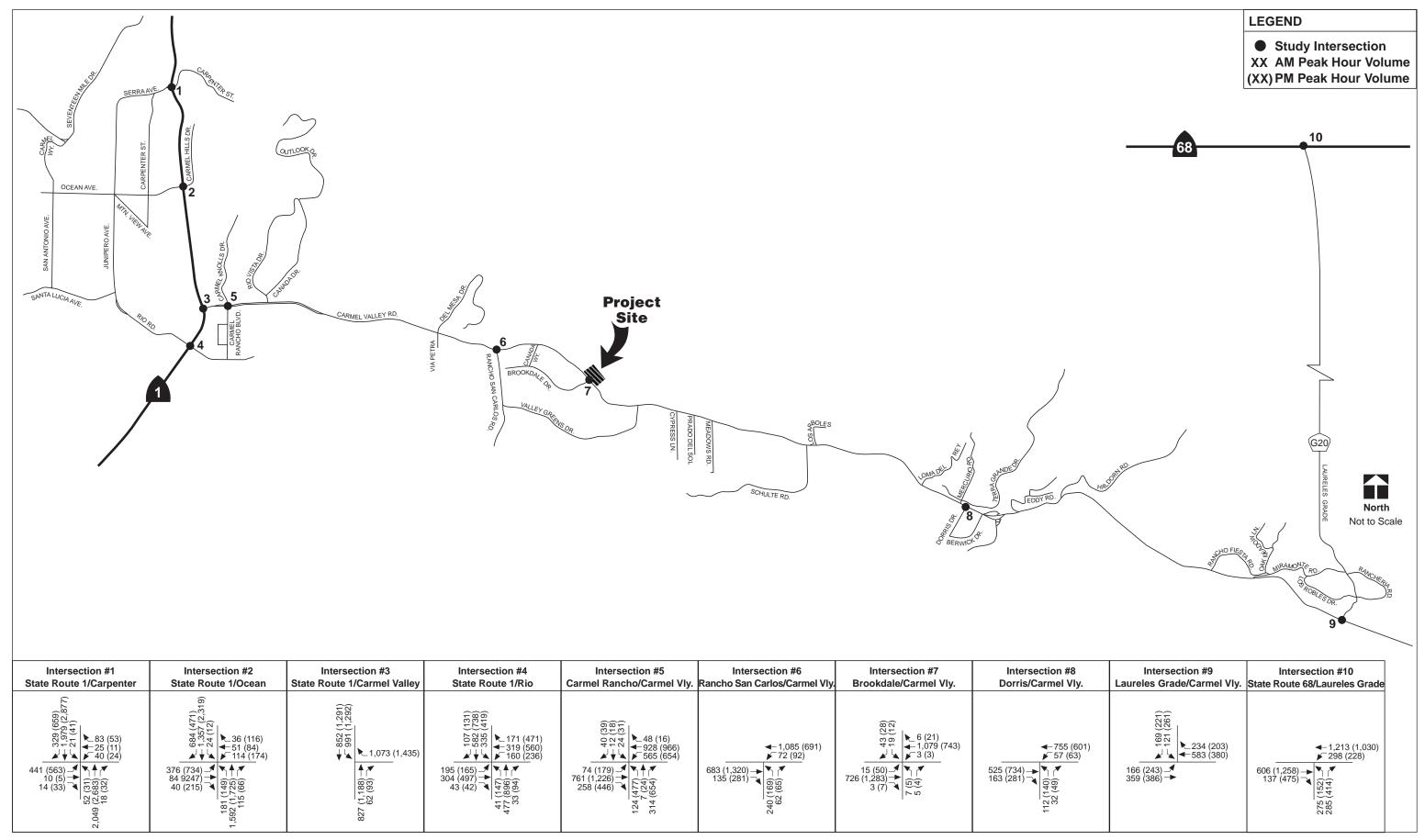

Results of Level of Service Analysis (Cumulative)

Table VII summarizes the intersection LOS analysis results. The detailed calculation sheets depicting cumulative traffic operations are contained in Appendix F. Under this scenario, the intersections of Carmel Valley Road/Brookdale Drive/Project Driveway (Int. 7), Carmel Valley Road/Dorris Drive (Int. 8), and Carmel Valley Road/Laureles Grade (Int. 9) were assumed to be signalized.

Under the Cumulative Year 2025 conditions, the intersections of Carmel Valley Road/Carmel Rancho Boulevard/Carmel Knolls Drive (Int. 5) and Carmel Valley Road/Rancho San Carlos Road (Int. 6) are expected to continue to operate at acceptable levels of service. The intersections of Carmel Valley Road/Brookdale Drive/Project Driveway (Int. 7), Carmel Valley Road/Dorris Drive (Int. 8) and Carmel Valley Road/Laureles Grade (Int. 9) are also expected to operate acceptably, with signalization. The following five intersections are expected to operate unacceptably under the Year 2025 scenario.

The intersection of Highway 1/Carpenter Street (Int. 1) is expected to continue to operate unacceptably during the p.m. peak hour. The recommended mitigation for this intersection includes 1) the utilization of the 'overlap phasing' to have westbound right-turns on Carpenter Street go at the same time as the southbound Highway 1 left-turns, 2) the utilization of 'overlap phasing' to have southbound right-turns on Highway 1 go simultaneously with the eastbound Carpenter Street left-turns, 3) modification of the westbound Carpenter Street approach convert the existing through/left-lane to only a through lane, 4) utilization of 'protected' phasing for the left-turn movement on the westbound Carpenter Street approach, 5) utilization of 'protected+permitted' phasing for the left-turn movement on the eastbound Carpenter Street approach and 6) adding an additional through lane on northbound Highway 1 approach. With these measures, the intersection is expected to operate acceptably. However, the California Coastal Act Section 30254 prohibits the widening of Highway 1 in the vicinity of the project area.

The intersection of Highway 1/Ocean Avenue/Carmel Hills Drive (Int. 2) is expected to continue to operate unacceptably. The recommended mitigation for this intersection includes 1) widening the westbound approach to have one exclusive left-turn lane, one shared left-turn/through lane, and one exclusive right-turn lane, 2) widening the eastbound approach to have two exclusive left-turn lanes, one through lane, and one exclusive right-turn lane, 3) adding a third exclusive through lane on southbound Highway 1 approach, 4) utilizing 'overlap phasing' to have southbound right-turns on Highway 1 go simultaneously with the eastbound Ocean Avenue left-turns, and 5) utilizing 'overlap phasing' to have westbound right-turns on Ocean Avenue go simultaneously with the southbound Highway 1 left-turns. The intersection is expected to operate acceptably with the recommended mitigation. However, as mentioned earlier, the California Coastal Act Section 30254 prohibits the widening of Highway 1 in the vicinity of the project area.

Cumulative Turning Movement Volumes

TABLE VII: CUMULATIVE LEVELS OF SERVICE

			A.M.	Peak	P.M.	Peak
	Intersection	Control	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
1	Highway 1/Carpenter St	Signal	20.6	С	53.5	D
	- Utilizing 'overlap' for SB and WB RT, Modifying WB to have 1LT, 1TH, 1RT, Utilizing 'protected + permitted' on EB LT	Signal	14.0	В	29.1	С
2	Highway 1/Ocean Ave/Carmel Hills Dr	Signal	31.7	С	120+	F
	- Widening EB and WB approaches, Installing a SB TH Lane, Utilizing 'overlap' for SB and WB RT	Signal	15.8	В	28.7	С
3	Highway 1/Carmel Valley Rd	Signal	17.9	В	77.1	E
	- Modifying NB RT to a Shared TH/RT	Signal	11.1	В	18.0	В
4	Highway 1/Rio Rd	Signal	28.3	С	87.9	F
	- Widening SB approach to have 2LT, 2TH and 1RT, Modifying NB to have 1LT, 1TH and 1TH/RT, and Utilizing 'overlap' for WB RT	Signal	21.0	С	34.7	С
5	Carmel Valley Rd/Carmel Rancho Blvd	Signal	14.2	В	30.8	С
6	Carmel Valley Rd/Rancho San Carlos Rd	Signal	14.0	В	22.2	С
7	Carmel Valley Rd/Brookdale Dr	Signal	8.8	А	10.0	А
8	Carmel Valley Rd/Dorris Dr	Signal	7.2	Α	8.3	Α
9	Carmel Valley Rd/Laureles Grade	Signal	13.1	В	16.0	В
10	Highway 68/Laureles Grade	Signal	27.6	С	67.0	E
	- Utilizing 'overlap' for NB RT, Modifying EB RT to a Shared TH/RT	Signal	21.1	С	18.4	В

The intersection of Highway 1/Carmel Valley Road (Int. 3) is expected to continue to operate unacceptably at LOS D during the p.m. peak hour. Modification of the northbound Highway 1 approach to have one through lane and one shared through/right-turn lane is expected to improve the intersection operating condition to an acceptable level. There current exist two lanes on the northbound receiving approach.

The intersection of Highway 1/Rio Road (Int. 4) is expected to operate unacceptably during the p.m. peak hour. The recommended mitigation includes 1) modifying the northbound Highway 1 approach to include one left-turn lane, one exclusive through lane, and one shared through/right-turn lane, 2) widening the southbound Highway 1 to have two left-turn lanes, two exclusive through lanes and one right-turn lane, and 3) utilizing 'overlap phasing' to have westbound right-turns on Rio Road go simultaneously with the southbound Highway 1 left-turns is expected to mitigate the congestion problems at this location.

The project applicant should pay its fair share to the TAMC Highway 1 Improvement Fee program for mitigation of the above four study intersections.

The intersection of Highway 68/Laureles Grade (Int. 10) is expected to operate at LOS E during the p.m. peak hour. The recommended mitigation for this location includes 1) utilizing 'overlap' phasing to have northbound right-turns on Laureles Grade go simultaneously with the westbound Highway 68 left-turns, and 2) modifying the eastbound Highway 68 approach to include one through lane and one shared through/right-turn lane in conjunction with adding a lane on the eastbound receiving approach. With the recommended mitigation, the intersection is expected to operate acceptably. However, the mitigation for Highway 68/Laureles Grade should be consistent with the operational improvements provided in the Highway 68 Action Plan for the intersection.

Recommended Lane Geometry for Carmel Valley Road/Brookdale Drive/Project Driveway

The project access road, September Ranch Road will connect and form the fourth (north) leg at the Carmel Valley Road/Brookdale Drive intersection. The intersection is expected to operate unacceptably under Cumulative conditions with the current lane geometry and control. Signalization would improve the intersection operating conditions to acceptable levels. However, the intersection does not meet the Caltrans' peak hour signal warrant under the Existing or any of the future scenarios analyzed. The intersection does not meet the Caltrans' all-way STOP warrant either.

Turning warrants were analyzed to determine whether or not an exclusive right-turn lane or left-turn lane is required on Carmel Valley Road at Brookdale Road/project driveway. The detailed warrant analysis sheet are contained in Appendix H.

According to the County's left-turn warrant analysis, a left-turn channelization is required for both eastbound and westbound Carmel Valley Road approaches under the existing conditions and all future scenarios analyzed. The right-turn warrant analysis shows that the intersection requires a taper to accommodate future westbound right-turns from Carmel Valley Road onto the project access road beginning from the existing plus project scenario. No right-turn taper is required on eastbound Carmel Valley Road.

Sight Distance

September Ranch Road, the project access road, will connect with Carmel Valley Road at Brookdale Drive, forming a four-legged intersection. Carmel Valley Road is posted with a 50-mph speed limit. The standard stopping sight distance, recommended by the Caltrans Highway Design Manual (HDM), for a roadway with a design speed of 55 mph (assumed 5 mph higher than the posted speed limit) is 500 feet. Table 405.1A of the HDM recommends 630 feet for corner sight distance, based on the "7-1/2 Second Criteria".

From the proposed location of September Ranch Road, an outbound driver would have a sight distance of approximately 375 feet looking to his right (or looking west), which does not meet the Caltrans standard for being able to see a six inch object on the Broadway. The sight distance is restricted by the small vertical curve on Carmel Valley Road. However, given that many vehicles are approximately 3 feet tall, much higher than 6 inches, drivers on Carmel Valley Road and drivers on September Ranch Road should be able to see each other from 600 feet away. A standard intersection ahead warning sign should be installed on Carmel Valley Road in advance of September Ranch to alert drivers on Eastbound Carmel Valley Road. Installing a traffic signal would be another option to mitigate sight distance problem. The sight distance looking to the left (or looking east) is approximately 760 feet, which exceeds the required limit for stopping and corner sight distance.

ROADWAY SEGMENT ANALYSIS

Roadway segment analysis was conducted to determine the number of through lanes that may be needed to have Carmel Valley Road operate at acceptable levels of service for all study scenarios. The analysis focused on the p.m. peak traffic conditions on the following four segments of Carmel Valley Road:

- 1) Robinson Canyon Road Schulte Road
- 2) Schulte Road Rancho San Carlos Road
- 3) Rancho San Carlos Road Carmel Rancho Boulevard
- 4) Carmel Rancho Boulevard Highway 1

Monterey County staff provided the existing (Year 2002) average daily traffic on these four segments. The analysis assumed that the p.m. peak hour volumes were approximately 10 percent of the daily traffic volumes. Forecasted Year 2025 p.m. peak volumes were derived from the information contained in the AMBAG model. The existing and forecasted p.m. volumes on for both directions the study segments are summarized below:

1. Carmel Valley Road, Robinson Canyon Road – Schulte Road,

Existing p.m. volumes - 1,460 vph

Existing plus Project p.m. volumes - 1,538 vph

Existing plus Project plus Approved plus Pending p.m. volumes - 1,828 vph

Cumulative Year 2025 p.m. volumes - 1,990 vph

2. Carmel Valley Road, Schulte Road – Rancho San Carlos Road,

Existing p.m. volumes - 1,630 vph

Existing plus Project p.m. volumes - 1,708 vph

Existing plus Project plus Approved plus Pending p.m. volumes - 1,998 vph

Cumulative Year 2025 ADT- 2,170 vph

3. Carmel Valley Road, Rancho San Carlos Road – Carmel Rancho Boulevard,

Existing p.m. volumes - 2,430 vph

Existing plus Project p.m. volumes - 2,508 vph

Existing plus Project plus Approved plus Pending p.m. volumes - 2,926 vph

Cumulative Year 2025 p.m. volumes - 3,190 vph

4. Carmel Valley Road, Carmel Rancho Boulevard – Highway 1,

Existing p.m. volumes - 2,410 vph

Existing plus Project p.m. volumes - 2,469 vph

Existing plus Project plus Approved plus Pending p.m. volumes - 2,814 vph

Cumulative Year 2025 p.m. volumes - 3,080 vph

Carmel Valley Road is a two-lane rural highway. The information about the LOS methodology for a two-lane highway (one-lane in each direction) segments can be found in the Transportation Research Board's 2000 *Highway Capacity Manual* (HCM). The HCM suggested a capacity of 3,400 vehicles per hour for both directions combined.

As shown, the existing and forecasted volumes on the four study segments are expected to be within the two-lane highway capacity. Therefore, Carmel Valley Road should be able to accommodate future traffic in the area. However, the Carmel Valley Master Plan (as of 1995) lists three long-term passing lane improvements along Carmel Valley Road at the following locations:

- In front of September Ranch
- Opposite of Garland Ranch Regional Park, which is east of Robinson Canyon Road
- Near Laureles Grade Road, which is east of Garland Ranch Regional Park

SUMMARY OF MITIGATION

Existing Conditions

The following improvements are required for existing conditions:

- 1. Utilizing 'overlap phasing' for westbound right-turns and southbound right-turns at the intersection of Highway 1/Carpenter Street (Int. 1).
- 2. Widening the eastbound and westbound approaches of the Highway 1/Ocean Avenue/Carmel Hills Drive (Int. 2) to have one exclusive left-turn lane, one shared left-turn/through lane, and one exclusive right-turn lane on each approach;
- 3. Signalizing the Carmel Valley Road/Dorris Drive intersection (Int. 8);
- 4. Signalizing the Carmel Valley Road/Laureles Grade intersection (Int. 9).

Proposed September Ranch Mitigation Measures

- 1. The project will be responsible for contributing towards planned long-term improvements to Highway 1. The contribution will be calculated based on the expected daily project trips on Highway 1 north of Carmel Valley Road. This contribution will be the projects fair share to improve the intersections along Highway 1, including Highway 1/Carpenter Street (Int. 1), Highway 1/Ocean Avenue/Carmel Hills Drive (Int. 2), Highway 1/Carmel Valley Road (Int. 3), and Highway 1/Rio Road (Int. 4).
- 2. The project will be responsible for installing the fourth (north) leg of September Ranch Road (the project access road) at the existing stop controlled T-intersection of Carmel Valley Road/Brookdale Drive (Int. 7). The project will also be responsible for signalizing this intersection and any signal coordination costs associated with this signalization.
- 3. Lane improvement at Carmel Valley Road/Brookdale Drive/September Ranch Road; installing a right-turn taper on westbound Carmel Valley Road, and installing a left-turn lane for both the eastbound and westbound Carmel Valley Road approaches.
- 4. Installing an intersection ahead warning sign on eastbound Carmel Valley Road in advance of September Ranch Road to alert drivers on Carmel Valley Road.
- 5. The County will determine the project's Carmel Valley Traffic Impact Fee (CVTIF). The funding may be used to improve Carmel Valley Road/Dorris Drive (Int. 8) and Carmel Valley Road/Laureles Grade (Int. 9).
- 6. The project will be responsible for its fair share contribution towards the cost of installing a traffic signal at the Rio Road/Carmel Rancho Boulevard intersection¹. The fee will be calculated based on the amount of the project p.m. trips that are expected to use the intersection.
- 7. The project should provide a fair share contribution towards cumulative impact mitigations as described in the following Cumulative Mitigation Measures section.

_

¹ This intersection is not part of the present traffic study; however, the County staff identified signalization as a mitigation measures for this location.

Cumulative (Year 2025) Mitigation Measures

1. Signal modification and widening of the Highway 68/Laureles Grade intersection; to utilize 'overlap phasing' to have northbound right-turns on Laureles Grade go simultaneously with the westbound Highway 68 left-turns, and to modify the eastbound Highway 68 approach to include one through lane and one shared through/right-turn lane. However, the mitigation for Highway 68/Laureles Grade should be consistent with the operational improvements provided in the Highway 68 Action Plan for the intersection.

STUDY REFERENCES

TJKM Personnel

Gordon Lum, Senior Associate Heba El-Guendy, Associate Project Manager Thirayoot Limanond (Pong), Senior Transportation Engineer Geri Foley, Graphic Designer Lily Moore, Office Supervisor

Persons Consulted

George Divine, Monterey County Public Works Department Enrique Saavedra, Monterey County Public Works Department Neal Thompson, Monterey County Public Works Department Alana Knaftar, County Planning of Building Inspection

References

Highway Capacity Manual, Transportation Research Board, 2000
Highway Design Manual, Caltrans
Traffic Manual, Caltrans
Trip Generation, Sixth Edition, Institute of Transportation Engineers, 1997
Traffic Impact Study for Wang Minor Subdivision, Higgins Associates, November, 2002
Traffic and Parking Evaluation for Sunrise Assisted Living Project, Higgins Associates, 2002

I. INTRODUCTION

SCOPE OF THE METHODOLOGY

This chapter contains a methodology for analyzing the capacity and level of service (LOS) of signalized intersections. The analysis must consider a wide variety of prevailing conditions, including the amount and distribution of traffic movements, traffic composition, geometric characteristics, and details of intersection signalization. The methodology focuses on the determination of LOS for known or projected conditions.

The methodology addresses the capacity, LOS, and other performance measures for lane groups and intersection approaches and the LOS for the intersection as a whole. Capacity is evaluated in terms of the ratio of demand flow rate to capacity (v/c ratio), whereas LOS is evaluated on the basis of control delay per vehicle (in seconds per vehicle). Control delay is the portion of the total delay attributed to traffic signal operation for signalized intersections. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Appendix A presents a method for observing intersection control delay in the field. Exhibit 10-9 provides definitions of the basic terms used in this chapter.

Each lane group is analyzed separately. Equations in this chapter use the subscript i to indicate each lane group. The capacity of the intersection as a whole is not addressed because both the design and the signalization of intersections focus on the accommodation of traffic movement on approaches to the intersection.

The capacity analysis methodology for signalized intersections is based on known or projected signalization plans. Two procedures are available to assist the analyst in establishing signalization plans. The first is the quick estimation method, which produces estimates of the cycle length and green times that can be considered to constitute a reasonable and effective signal timing plan. The quick estimation method requires minimal field data and relies instead on default values for the required traffic and control parameters. It is described and documented in Chapter 10.

A more detailed procedure is provided in Appendix B of this chapter for estimating the timing plan at both pretimed and traffic-actuated signals. The procedure for pretimed signals provides the basis for the design of signal timing plans that equalize the degree of saturation on the critical approaches for each phase of the signal sequence. This procedure does not, however, provide for optimal operation.

The methodology in this chapter is based in part on the results of a National Cooperative Highway Research Program (NCHRP) study (1, 2). Critical movement capacity analysis techniques have been developed in the United States (3–5), Australia (6), Great Britain (7), and Sweden (8). Background for delay estimation procedures was developed in Great Britain (7), Australia (9, 10), and the United States (11). Updates to the original methodology were developed subsequently (12–24).

LIMITATIONS TO THE METHODOLOGY

The methodology does not take into account the potential impact of downstream congestion on intersection operation. Nor does the methodology detect and adjust for the impacts of turn-pocket overflows on through traffic and intersection operation.

II. METHODOLOGY

Exhibit 16-1 shows the input and the basic computation order for the method. The primary output of the method is level of service (LOS). This methodology covers a wide range of operational configurations, including combinations of phase plans, lane

Background and underlying concepts for this chapter are in Chapter 10

A lane group is indicated in formulas by the subscript i

See Chapter 10 for description of quick estimation method

utilization, and left-turn treatment alternatives. It is important to note that some of these configurations may be considered unacceptable by some operating agencies from a traffic safety point of view. The safety aspect of signalized intersections cannot be ignored, and the provision in this chapter of a capacity and LOS analysis methodology for a specific operational configuration does not imply an endorsement of the suitability for application of such a configuration.

Input Parameters - Geometric - Traffic - Signal Lane Grouping and Demand Saturation Flow Rate Flow Rate - Basic equation - Lane grouping - Adjustment factors - PHF - RTOR Capacity and v/c - Capacity - v/c Performance Measures - Progression adjustment - LOS Back of queue

EXHIBIT 16-1, SIGNALIZED INTERSECTION METHODOLOGY

LOS

The average control delay per vehicle is estimated for each lane group and aggregated for each approach and for the intersection as a whole. LOS is directly related to the control delay value. The criteria are listed in Exhibit 16-2.

EXHIBIT 16-2. LOS CRITERIA FOR SIGNALIZED INTERSECTIONS

LOS	Control Delay per Vehicle (s/veh)
A	≤ 10
B -	> 10-20
C	> 2035
D	> 35–55
E	> 55–80
F	> 80

LOS criteria

PART A. TWO-WAY STOP-CONTROLLED INTERSECTIONS

I. INTRODUCTION - PART A

In this section a methodology for analyzing capacity and level of service of two-way stop-controlled (TWSC) intersections is presented.

II. METHODOLOGY - PART A

Capacity analysis at TWSC intersections depends on a clear description and understanding of the interaction of drivers on the minor or stop-controlled approach with drivers on the major street. Both gap acceptance and empirical models have been developed to describe this interaction. Procedures described in this chapter rely on a gap acceptance model developed and refined in Germany (1). The concepts from this model are described in Chapter 10. Exhibit 17-1 illustrates input to and the basic computation order of the method described in this chapter.

LEVEL-OF-SERVICE CRITERIA

Level of service (LOS) for a TWSC intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS is not defined for the intersection as a whole. LOS criteria are given in Exhibit 17-2.

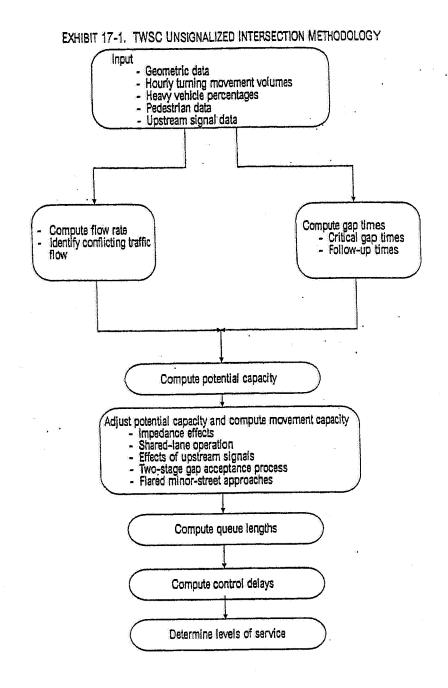
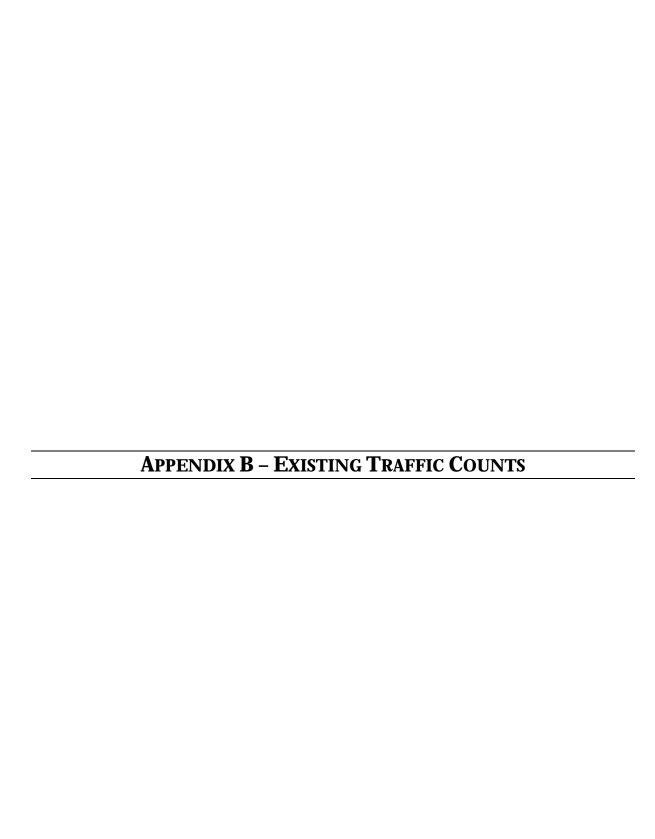
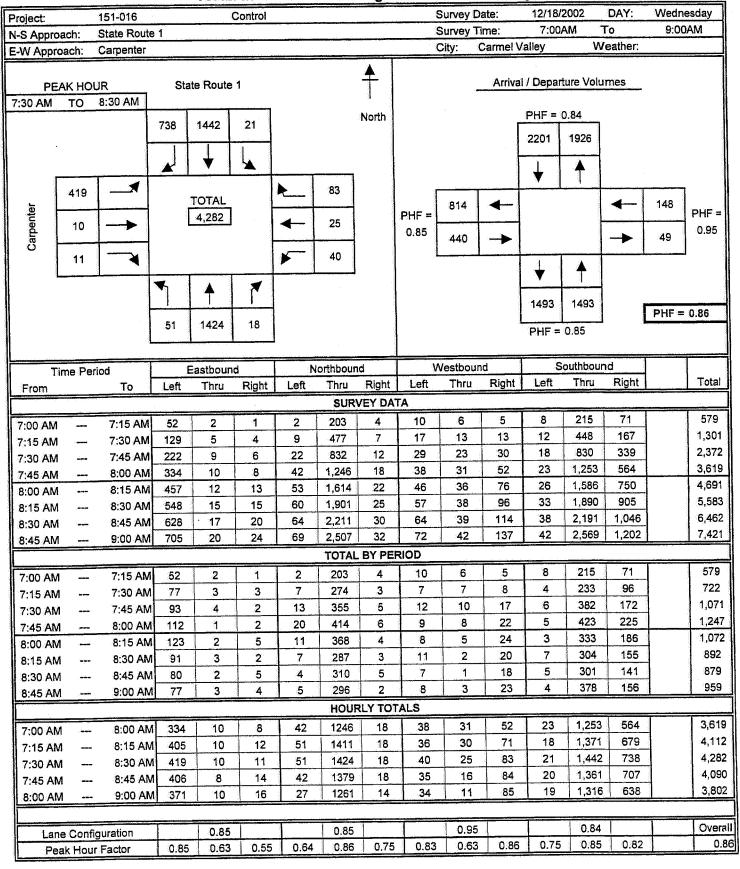
Both theoretical and empirical approaches have been used to arrive at a methodology

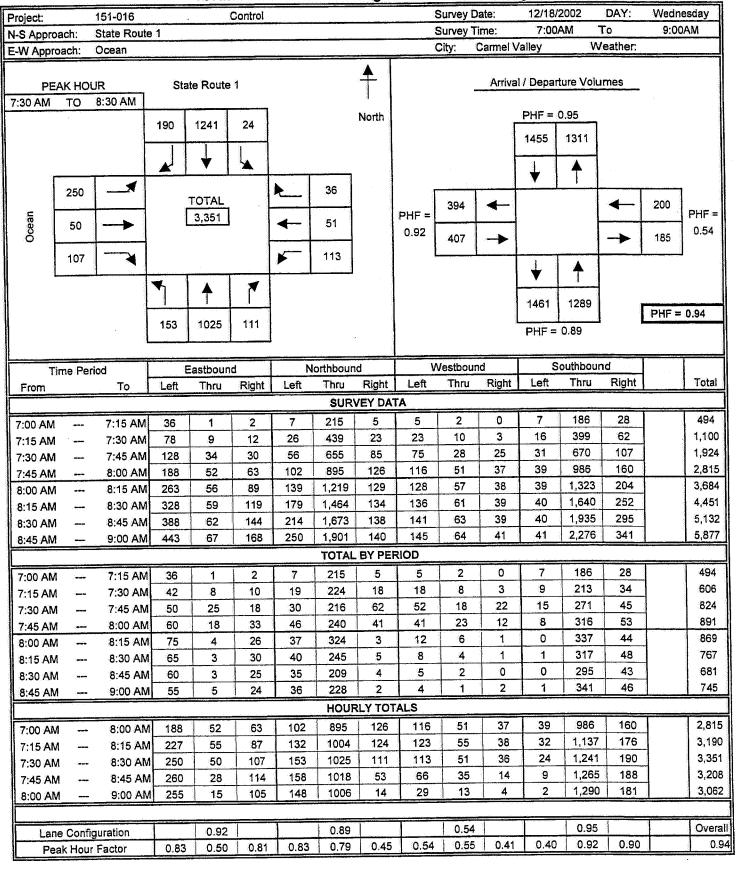
LOS is not defined for the overall intersection

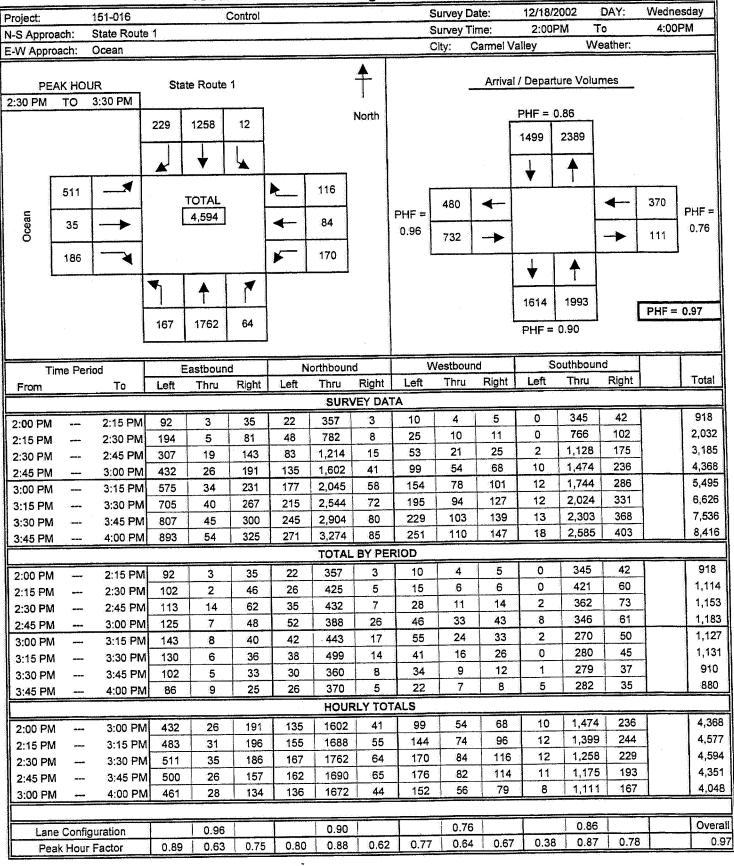
Highway Capacity Manual 2000

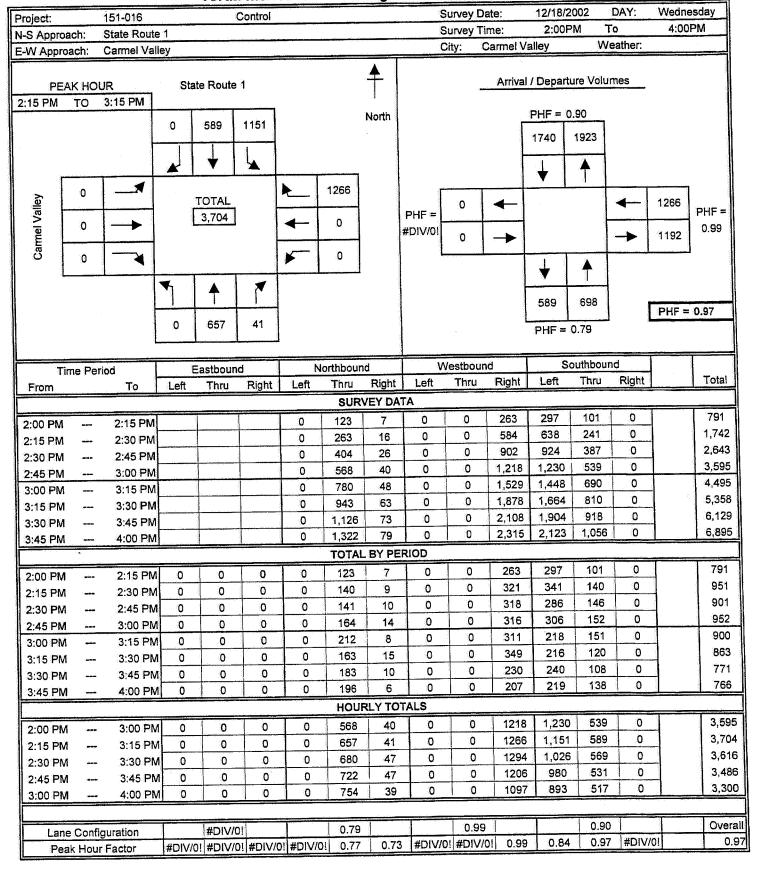
The LOS criteria for TWSC intersections are somewhat different from the criteria used in Chapter 16 for signalized intersections primarily because different transportation facilities create different driver perceptions. The expectation is that a signalized intersection is designed to carry higher traffic volumes and experience greater delay than an unsignalized intersection.

LOS thresholds differ from those for signalized intersections to reflect different driver expectations

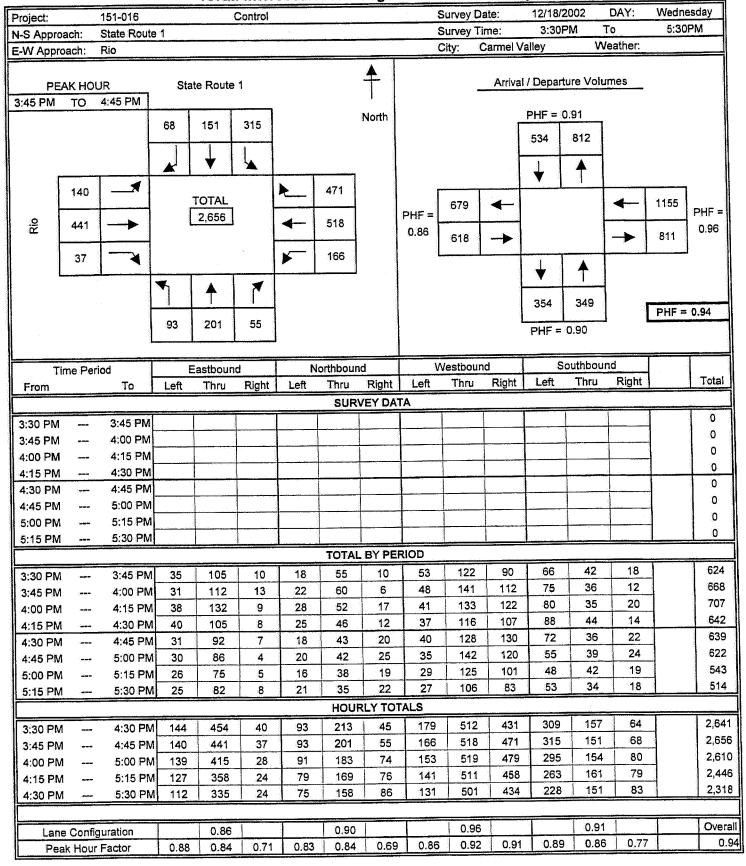




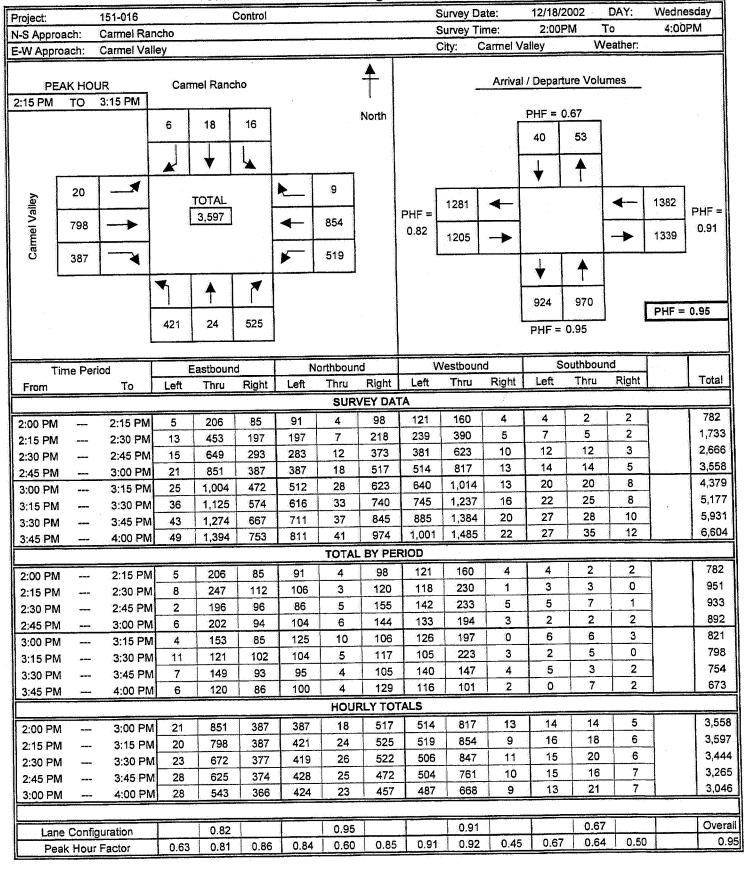

EXHIBIT 17-2. LEVEL-OF-SERVICE CRITERIA FOR TWSC INTERSECTIONS

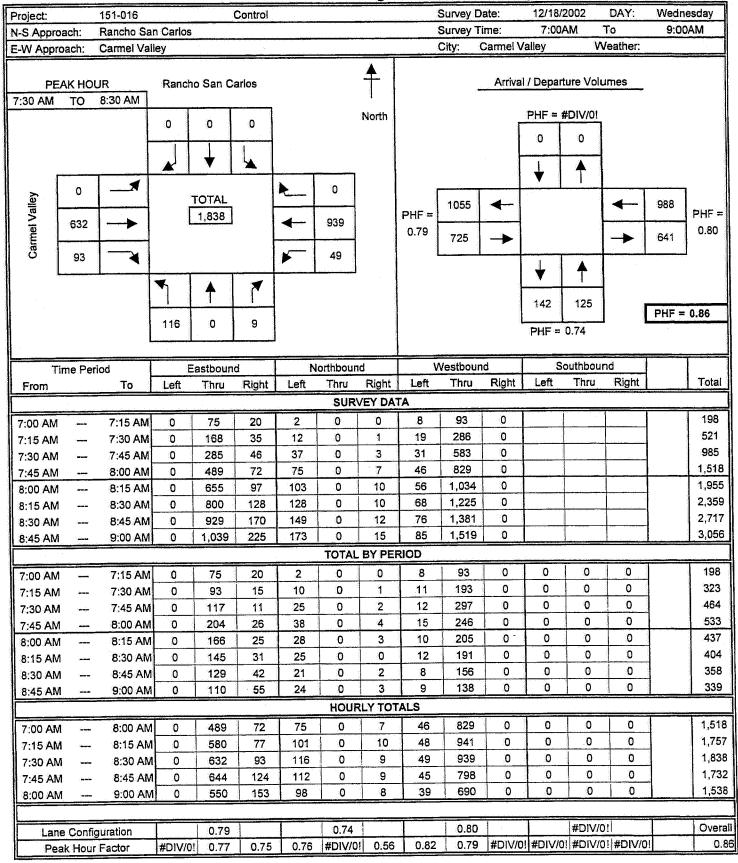

Level of Service	Average Control Delay (s/veh)
A	0-10
8	> 10–15
C	> 15–25
Ď	> 25–35
Ē	> 35–50
F	> 50



Project:		151-016			Control				8	Survey D	ate:	12/18/	2002	DAY:		esday
N-S Appro	ach:	State Rout	e 1				·			Survey T		2:00		0	4:00	DPM
E-W Appro	oach:	Carpenter							(City:	Carmel \	/alley	W	eather;		
							.,	A								7
PE	AK HO		Sta	te Route	1			7		٠.	Arriva	I / Depar	ture Volu	mes		
2:15 PM	TO	3:15 PM														
			664	1598	30			North			r	PHF =	0.87			
												2292	2901			
				- ↓ 1	L 1							1				
ï		1 -	_AX'		_		1					₩ 1	1			
	690			TOTAL		L	53		Г							1
<u>ब</u> ्		-	ſ	TOTAL					PHF =	714	←			-	88	PHF =
Carpenter	8		1.	5,344		←	11		0.84		_		t			0.76
, Gar	·····								0.04	735	->			-	70	
	37	*			9	F	24		L			4	A	ل انديست بن بندي		4
ı		4	-	, 1			است					V	↑			
				1				1				1659	2229			
												1009	2225		PHF =	= 0.97
			39	2158	32							PHF =	0.96			
		4														
Ti	me Pe	riod	E	astboun	d	N	orthbour	ıd	N	/estbou	nd	S	outhbour	nd		
From		То	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Total
							SUR	VEY DAT	Α							
2:00 PM		2:15 PM	126	2	10	8	441	10	6	1	15	10	376	164		1,169
2:15 PM		2:30 PM		3	23	15	962	18	10	1	27	18	829	360		2,525
2:30 PM		2:45 PM		7	34	30	1,476	29	17	2	37	25	1,247	531		3,844
2:45 PM	-	3:00 PM	601	10	42	39	2,032	36	25	5	51	31	1,659	686		5,217
3:00 PM		3:15 PM	816	10	47	47	2,599	42	30	12	68	40	1,974	828		6,513
3:15 PM		3:30 PM	988	12	50	53	3,185	52	33	14	79	47	2,273	990		7,776
3:30 PM	-	3:45 PM	1,138	13	55	63	3,662	65	35	16	88	59	2,599	1,145		8,938
3:45 PM		4:00 PM	1,279	15	66	68	4,143	73	35	16	100	67	2,898	1,282	<u> </u>	10,04
							TOTAL	BY PE	RIOD							
2:00 PM		2:15 PM	126	2	10	8	441	10	6	1	15	10	376	164		1,169
2:15 PM		2:30 PM		1	13	7	521	8	4	0	12	8	453	196	_	1,35
2:30 PM		2:45 PM	150	4	11	15	514	11	7	1	10	7	418	171	4	1,31
2:45 PM		3:00 PM	192	3	8	9	556	7	8	3	14	6	412	155		1,37
3:00 PM		3:15 PN	215	0	5	8	567	6	5	7	17	9	315	142	4	1,29
3:15 PM		3:30 PM		2	3	6	586	10	3	2	11	7	299	162	4	1,26
3:30 PM		3:45 PN	4	1	5	10	477	13	2	2	9	12	326	155	-	1,16
3:45 PM		4:00 PM	1 141	2	11	5	481	8	0	0	12	8	299	137		1,10
							HOU	RLY TOT	ALS							
2:00 PM		3:00 PM	601	10	42	39	2032		25	5	51	31	1,659	7	4	5,21
2:15 PM	<u></u>	3:15 PN	1 690	8	37	39	2158	32	24	11	53	30	1,598		-	5,34
2:30 PM		3:30 PN	1 729	9	27	38	2223	34	23	13	52	29	1,444		_	5,25
2:45 PM		3:45 PM		6	21	33	2186	36	18	14	51	34	1,352		4	5,09
3:00 PM	<u> </u>	4:00 PN	678	5	24	29	2111	37	10	11	49	36	1,239	596		4,82
Lane	e Confi	guration		0.84			0.96			0.76			0.87			Ove
	ak Hou		0.80	0.50	0.71	0.65	0.95	0.73	0.75	0.39	0.78	0.83	0.88	0.85		0

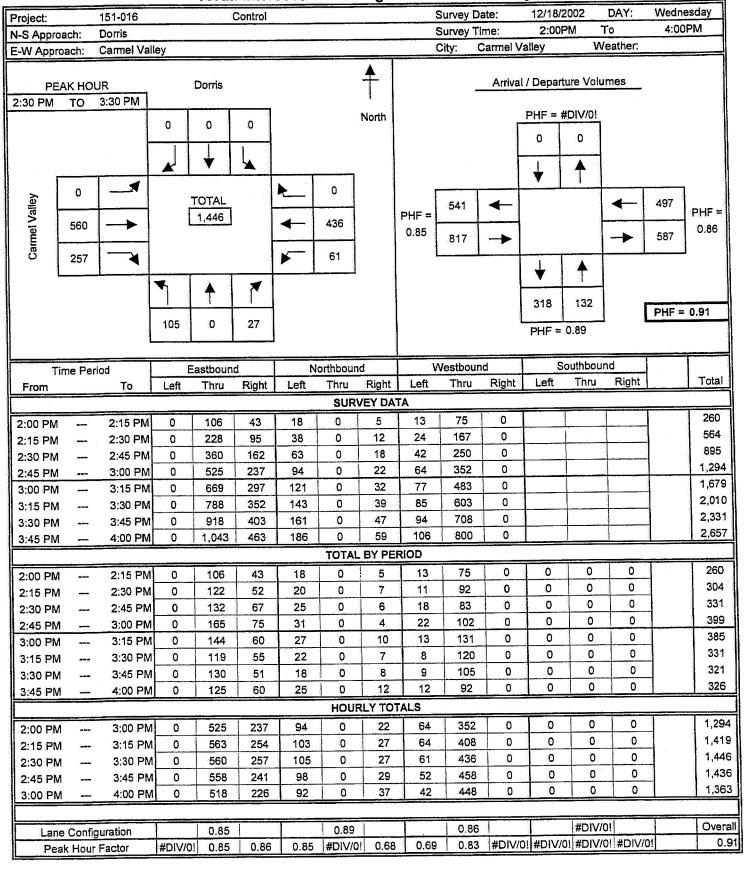



Project:		151-016		C	Control					urvey D		12/18/2		DAY:	Wedn	
N-S Approa	ich:	State Route	1							urvey Ti		7:00/		Го	9:00	MAC
-W Appro	ach:	Carmel Vall	еу		نظر المالية				C	ity: (Carmel \	/alley	W	eather:		
								A								
PEA	K HC		Stat	e Route	1			TI		_	Arriva	I / Depart	ure Volu	mes		
7:30 AM	то	8:30 AM			······								2.00			
			0	554	894			North			r	PHF = (0.93			
		L										1448	1267			
				1	4						1					
(★	1			
>	0		-	TOTAL		-	906		Г			l.				
Carmel Valley		4		2,759	-				PHF =	0	←			-	906	PHF=
<u>></u>	0		L	2,755		←	0	1	#DIV/0!				-			0.89
					F			ľ		0	→			-	938	
Ö	0	7					0		٠.				A			
ب			•	A .	7							*	1			
				1								554	405			
				2004	4.4							004			PHF =	0.91
			0	361	44							PHF =	0.87			
					· · · · · · · · · · · · · · · · · · ·											
Tin	ne Pe	riod	Ε	astbound	i e	No	rthboun	d	W	estboun		S	outhbour			
From		То	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Tota
							SURV	EY DAT	Ά							
7:00 AM		7:15 AM				0	60	4	0	0	174	139	50	0		427
7:15 AM	÷	7:30 AM				0	151	12	0	0	376	305	135	0		979
7:30 AM		7:45 AM				0	233	18	0	0	596	517	250	0		1,614
7:45 AM	:	8:00 AM				0	337	31	0	0	850	780	378	0		2,370
8:00 AM		8:15 AM				0	434	48	0	0	1,082	1,004	545	0		3,110
8:15 AM		8:30 AM				0	512	56	0	0	1,282	1,199	689	0		3,738
8:30 AM		8:45 AM				0	594	62	0	0	1,458	1,416	810 937	0		4,340 4,954
8:45 AM		9:00 AM				0	660	72	0	0	1,641	1,644	937	1 0	<u> </u>	4,90
								BY PEF						T		T 407
7:00 AM		7:15 AM	0	0	0	0	60	4	0	0	174	139	50	0	3	427
7:15 AM		7:30 AM	0	0	0	0	91	8	0	0	202	166	85	0		552 635
7:30 AM		7:45 AM	0	0	0	0	82	6	0	0	220 254	212 263	115 128	0	-	762
7:45 AM		8:00 AM	0	0	0	0	104	13		0	232	224	167	0	 	737
8:00 AM		8:15 AM		0	0	0	97 78	17 8	0	0	200	195	144	0	1	625
8:15 AM		8:30 AM 8:45 AM		0	0	0	82	6	0	0	176	217	121	0	1	602
8:30 AM		0.00.444		0	0	0	66	10	0	0	183	228	127	0		614
8:45 AM		9.00 AW		·				LY TOT	<u> </u>				 		***********	
		0.00 4**	-0		0	0	337	31	0	0	850	780	378	0	T	2,37
7:00 AM				0	0	0	374	44	0	0	908	865	495	0	1	2,68
7:15 AM				0	0	0	361	44	0	0	906	894	554	0	1	2,75
7:30 AM		0.45 514		0	0	0	361	44	0	0	862	899	560	0	1	2,72
7:45 AM 8:00 AM				0	0	0	323	41	0	0	791	864	559	0	1	2,57
6.00 AW		J.OJ AIVI	1	<u> </u>	1 		<u> </u>									
<u> </u>			T	#DIV/0		Ī	0.87	T T	1	0.89			0.93	1	1	Ove
		iguration	#DIV//0			#DIV/0!		0.65	#DIV/0!		0.89	0.85	0.83	#DIV/0)!	0.
L Pea	K MOU	r Factor	וייוטייין	11#UIV/U	. # 1 7 0	יטיפוטהן	3.01	_ 0.00	1							

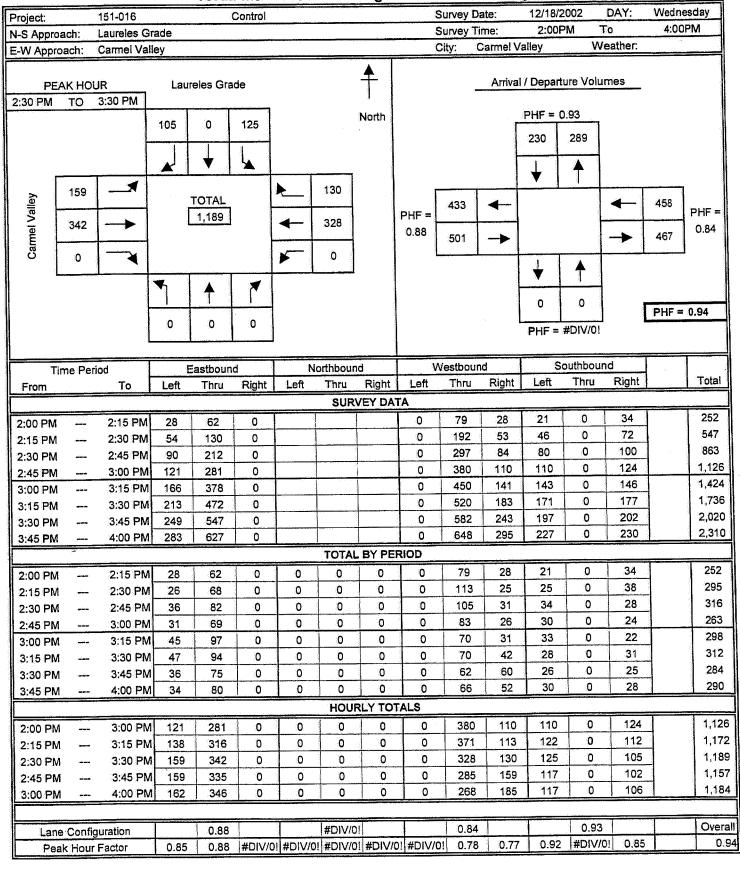


roject:		151-016		(Control					Survey D		12/18/		DAY:	Wedn	
I-S Appro	ach:	State Route	∍ 1	 		· · · · · · · · · · · · · · · · · · ·	 			Survey T		7:00/		To	9:00	MAC
-W Appro	oach:	Rio							. (City:	Carmel V	alley	VV	eather:		
PE/	AK HO	UR	Sta	te Route	1			+		, -	Arriva	l / Depart	ture Volu	mes		
7:45 AM	то	8:45 AM										DUF 1	202			
		1	104	130	335			North			Г	PHF = (
				-1								569	403			
_				<u> </u>	A							+	A			
	177	#		TOTAL		L _	115		[429	4		-1-1	—	505	
eg.	279	-		1,788		4	284		PHF = 0.79				ŀ			PHF = 0.83
	37				•	F	106			493	-	- 1		->	683	
L	· · · · · · · · · · · · · · · · · · ·	<u> </u>	▼ 1	A	7	1.						▼	1			
		1	1	1	-							273	221		PHF =	0.85
			41	111	69						ì	PHF =	0.74			
						Ma	orthboun	a a	V	Vestbour	ıd	S	outhbour	nd	T	
	me Pe	гоа То	Left	astbound Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Tota
From		10	Leit	Inu	ragin	1011		/EY DAT						X	<u> </u>	
7:00 AM		7:15 AM	12	18	3	6	25	10	11	7	24	22	28	5		171
7:15 AM		7:30 AM	39	43	8	17	60	35	37	29	59	67	53	12		459
7:30 AM		7:45 AM	79	88	15	32	89	66	57	69	90	132	83	30		830
7:45 AM		8:00 AM	130	154	25	40	116	84	76	131	118	210	110	65		1,25
8:00 AM		8:15 AM	192	236	38	49	147	104	111	216	150	303	142	94		1,78
8:15 AM		8:30 AM	226	306	46	60	172	121	139	288	176	389	179	116		2,21
8:30 AM		8:45 AM	256	367	52	73	200	135	163	353	205	467	213	134		2,61
8:45 AM		9:00 AM	283	421	59	83	224	146	185	410	229	542	254	149		2,98
								BY PER								1
7:00 AM		7:15 AM	12	18	3	6	25	10	11	7	24	22	28	5		171
7:15 AM		7:30 AM	27	25	5	11	35	25	26	22	35	45	25	7		288
7:30 AM		7:45 AM	40	45	7	15	29	31	20	40	31	65	30	18	-	371
7:45 AM		8:00 AM		66	10	8	27	18	19	62	28	78	27	35	 	429
8:00 AM		8:15 AM		82	13	9	31	20	35	85	32	93	32	29		523 436
8:15 AM		8:30 AM		70	8	11	25	17	28	72	26	86	37	22	-	400
8:30 AM	l	8:45 AM		61	6	13	28	14	24	65	29	78	34	18	4	36
8:45 AM	<u> </u>	9:00 AM	27	54	7	10	24	11	22	57	24	75	41	15	1	30
			.			,		LY TOT		1 404	140	T 040	1 340	T 65	T	1 4 2
7:00 AM	1	8:00 AM		154	25	40	116	84	76	131	118	210	110	65	-	1,25
7:15 AN		8:15 AN		218	35	43	122	94	100	209	126	281	114	89		1,61
7:30 AN	1	8:30 AN		263	38	43	112	86	102	259	117	322	126	104	-	1,7
7:45 AN	/I			279	37	41	111	69	106	284	115	335	130	104	1	1,7
8:00 AN	<u> </u>	9:00 AM	153	267	34	43	108	62	109	279	111	332	144	84		1,7
			1			1	1 4 = 1		7	0.00	7		0.92	1	7	Ove
		iguration	_	0.79		1	0.74	1 2 55	1	0.83	0.90	0.90	0.92		+	OVE
Pea	ak Hou	r Factor	0.71	0.85	0.71	0.79	0.90	0.86	0.76	0.84	_ ∪.9∪	1 0.50	1 0.00	0.74	<u> </u>	1 4

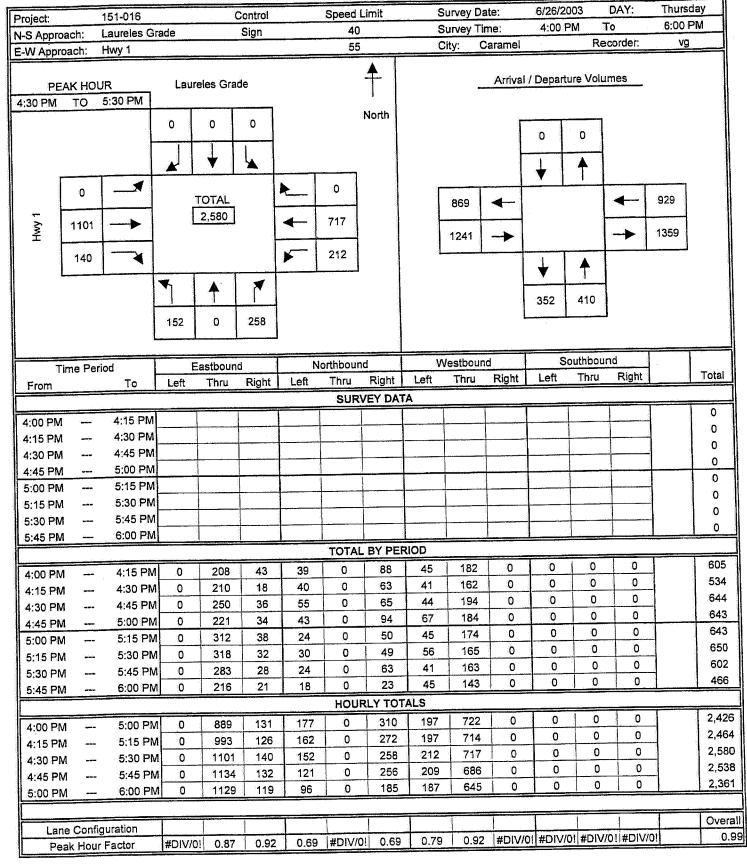
Project:		151-016		C	Control					Survey l	Date:	12/18/2		DAY:	Wedn	esday
N-S Approx	ach:	Carmel Ran	ncho							Survey		7:00		Го	9:00	AM
E-W Appro	oach:	Carmel Val	еу						(City:	Carmel \	/alley	W	eather:		
<u> </u>								A								
PEA	AK HO	UR	Cam	nel Rancl	no			+ 1			Arriva	ıl / Depart	ure Volu	mes		
7:30 AM	TO	8:30 AM														
			40	12	24			North			4	PHF = (0.76			i
		L	70									76	41			
				11	1 1											
				V	*							1	A			
Γ	23					L	11		,	 		▼				
ley	23			TOTAL						914	—			←	1203	
- Sa	602			2,594		4_	766		PHF =				1			PHF =
Je J	683						, 00		0.84	927				-	980	0.88
Carmel Valley	224				1	F	426	1								
Ĭ	221	1					720					1	A			
-			₹	A	7							V				
			1 1	T								659	388			
			400	-,	072										PHF =	0.85
		1	108	7	273							PHF =	0.82			-
Ti	me Pe	riod		astbound	i	N	orthboun	ıd	V	Vestbou	nd	S	outhbou	nd		
From	1.1010	То	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Total
1 10131							SUR	VEY DA	TA							
7.00.444		7:15 AM	2	104	32	17	0	18	59	158	Ιο	2	4	3		399
7:00 AM		7:30 AM	6	240	75	28	1	47	134	327	1	5	6	9		879
7:15 AM		ł		403	126	44	3	100	236	541	3	12	9	17		1,505
7:30 AM		7:45 AM	11	633	170	69	5	192	369	748	5	22	10	31		2,268
7:45 AM		8:00 AM	14	810	229	104	5	267	471	932	10	27	15	39		2,930
8:00 AM		8:15 AM	21	923	229	136	8	320	560	1,093		29	18	49		3,473
8:15 AM		8:30 AM	29		370	176	11	376	643	1,224		33	18	57	1	4,035
8:30 AM		8:45 AM	36	1,078 1,229	455	205	13	426	735	1,362		38	22	69		4,610
8:45 AM		9:00 AM	41	1,229	400	203		BY PE		1,002	1 .0					1 4,010
									7		7-2-	Т ,	1 4		T	000
7:00 AM		7:15 AM		104	32	17	0	18	59	158	0	2	4	3		399
7:15 AM		7:30 AM		136	43	11	1	29	75	169	1 1	3	2	6		480
7:30 AM		7:45 AM		163	51	16	2	53	102	214	2	7	3	8	-	626
7:45 AM		8:00 AM		230	44	25	2	92	133	207	2	10	1 -	14	 	763
8:00 AM		8:15 AM		177	59	35	0	75	102	184	5	5	5	8	4	662
8:15 AM		8:30 AM		113	67	32	3	53	89	161	2	2	3	10	1	543
8:30 AM		8:45 AM		155	74	40	3	56	83	131	1	4	0	8	4	562
8:45 AM	<u></u>	9:00 AM	5	151	85	29	2	50	92	138	2	5	4	12		575
							HOUF	RLY TO	TALS							
7:00 AM		8:00 AM	14	633	170	69	5	192	369	748	5	22	10	31		2,268
7:15 AM		8:15 AM	19	706	197	87	5	249	412	774	10	25	11	36		2,531
7:30 AM				683	221	108	7	273	426	766	11	24	12	40	_]	2,594
7:45 AM		0.45 444		675	244	132	8	276	407	683	10	21	9	40	4	2,530
8:00 AM		131		596	285	136	8	234	366	614	10	16	12	38		2,342
																
	o Conf	iguration	T	0.84	T	T	0.82	T		0.88			0.76			Overa
			0.72	0.74	0.82	0.77	0.52	0.74	0.80			0.60	0.60			0.8
L Pea	ak nou	r Factor	1 0.12	0.74	1 0.02	1 0.77	1 0.00									

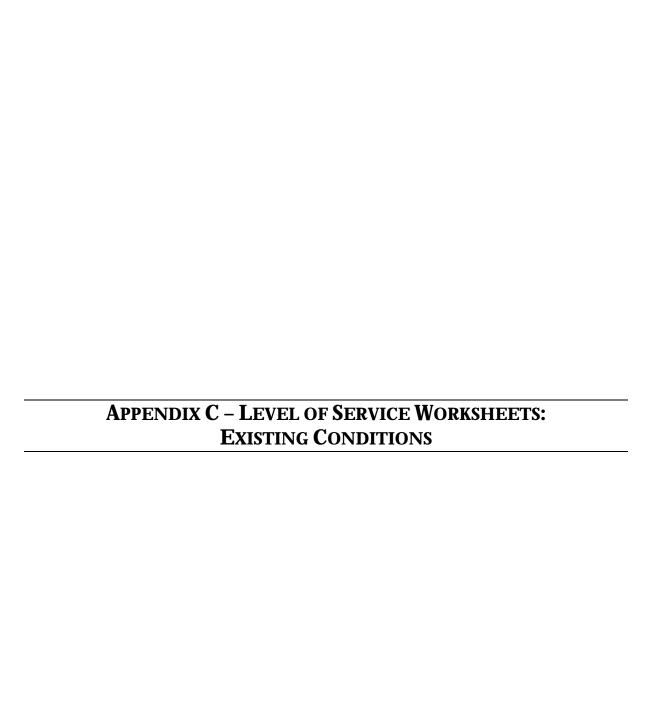


Project:		151-016		(Control				(Survey D	ate:	12/18/20		DAY:	Wedne	
N-S Appro	ach:	Rancho Sa	n Carlos							Survey T	me:	4:00P		Гo	6:00	PM
-W Appro		Carmel Val	ley						(City: (Carmel V	alley	W	eather:		
								A								
PE	AK HO	UR	Ranch	o San Ca	ırlos			+ 1		_	Arrival	/ Departu	re Volu	mes		
4:30 PM	то	5:30 PM						1 1								
			0	0	0			North			-	PHF = #	DIV/0!			
		L		0								0	0			
					1.			1			-					
			<u> </u>	▼	*							V	A			
	0						o i									
Carmel Valley			· ·	TOTAL	-					628	4 -			4-	570	PHF =
2	1122		L	1,950	1	←	539		PHF =				- }			0.93
Ĕ.									0.98	1260	→			→	1153	0.55
ပ္မ	138					F	31	1	1						لــــــا	
1			- Т					1				V	↑			
			T	A	7											
		ł	_ _	- 1 - 1								169	120		PHF =	0.98
			89	0	31						L	PHF = (194	1		
			1													
					, ,			لــــــــــــــــــــــــــــــــــــــ	1/	Vestbour	d I	So	uthbour	nd		
	ime Per	3		astbound		Left	orthboun Thru	a Right	Left	Thru	Right	Left	Thru	Right		Tota
From		То	Left	Thru	Right	Leit					regne				1	
							SURV	VEY DAT	IA	 						0
4:00 PM		4:15 PM														0
4:15 PM		4:30 PM	***************************************												1	0
4:30 PM		4:45 PM														ő
4:45 PM		5:00 PM	4	1						1						0
5:00 PM		5:15 PM											 			0
5:15 PM		5:30 PM								-					1	0
5:30 PM		5:45 PM									1		· · · · · · · · · · · · · · · · · · ·			0
5:45 PM		6:00 PM	L				TOTAL	BY PE	SIOD	3						
						F 40				144	0	0	0	0	T	413
4:00 PM		4:15 PM		186	28	40	0	12 8	3 5	144	0	0	0	0	1	472
4:15 PM		4:30 PM		241	31	32	0	7	10	138	0	0	0	0	1	49
4:30 PM		4:45 PM		275	42	25	0	10	6	122	0	0	0	0	1	480
4:45 PM		5:00 PM		285	35	22	0	6	8	146	0	0	0	0	1 -	47
5:00 PM		5:15 PM 5:30 PM		269	32 29	18 24	0	8	7	133	0	0	0	0	1	49
5:15 PM		5:30 PM 5:45 PM	1	293 280	35	20	0	5	4	150	0	0	0	0	1	49
5:30 PM		6:00 PM		255	31	15	0	4	5	128	0	0	0	0		43
5:45 PM		0.00 FIV		233		1 19		RLY TOT		1 := :	ستسل					
				1 22-	400	440			7	559	0	0	0	T 0	7	1,8
4:00 PN		5:00 PM	-	987	136	119	0	37	24	561	0	0	0	0	1	1,9
4:15 PN		5:15 PM		1070	140	97	0	31	31	539	0	0	0	1 0	-	1,9
4:30 PN		5:30 PN	-	1122	138	89	0	29	25	551	0	0	0	0	7	1,9
4:45 PN		5:45 PM		1127	131 127	84 77	0	23	24	557	0	1 0	0	0	1	1,9
5:00 PM	1	6:00 PM	1 0	1097	12/	1 11		1 23	1 24	301		<u>_</u> _			سبسط	
					1	,	T - 2 -	1	1	1 0 00	1	T	#DIV/0	NI		Ove
		guration		0.98	1	 	0.94	1 0 = 0	+	0.93)! #DIV/0			nı	CVE
l Pea	ak Hour	Factor	#DIV/0	. 0.96	0.82	0.89	#DIV/0	! 0.78	0.78	0.92	#UIV/L	טועוט#ן:י	: #1/1//	.; πω1V/	V:	


Project:		151-016		(Control				(Survey D	ate:	12/18/		DAY:	Wedn	esday
I-S Approa	ich:	Brookdale								Survey T		7:00/		Го	9:00	MAC
-W Appro	ach:	Carmel Vall	еу			· · · · · · · · · · · · · · · · · · ·			(City:	Carmel V	/alley	W	eather:	·	
PEA 7:30 AM	K HO	JR 8:30 AM	Br 0	ookdale 0	0			A North		: -	Arriva [PHF = 1		mes	÷	
Carmel Valley	0		_	TOTAL 1,651	<u> </u>	<u>k_</u>	0 1002		PHF =	1009	+	0	1	—	1005	PHF = 0.82
Carm	3	-4				F	3			634	_	+	<u> </u>	→	636	
-			Y	<u></u>	7							6	12	1	PHF =	0.83
			7	0	5	· ·						PHF =	0.50	}		
Tin	ne Per	iod	E	astbound	1	No	orthbound	d	V	/estbour	ıd	S	outhbour			
From		То	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Total
:		<u>,</u>					SURV	EY DA								
7:00 AM 7:15 AM		7:15 AM 7:30 AM	0	78 177	0	0	0	1	0	101 309	0					179 487
7:30 AM 7:45 AM		7:45 AM 8:00 AM	0	290 499	1 3	2	0	5 5	0 2	615 899	0					913 1,410
8:00 AM 8:15 AM		8:15 AM 8:30 AM	0	667 808	3 3	3 7	0	5 6	3	1,116 1,311	0					1,797 2,138
8:30 AM 8:45 AM		8:45 AM 9:00 AM	0	937 1,053	4	7 10	0	8 8	4 5	1,478 1,612	0					2,438 2,692
							TOTAL	BY PER	RIOD							
7:00 AM 7:15 AM		7:15 AM 7:30 AM	0	78 99	0	0	0	0 1	0	101 208	0	0	0	0		179 308
7:30 AM 7:45 AM		7:45 AM 8:00 AM	0	113 209	1 2	2	0	4	0 2	306 284	0	0	0	0		426 497
8:00 AM 8:15 AM		8:15 AM 8:30 AM	0	168 141	0	1 4	0	0	1 0	217 195	0	0	0	0		387 341
8:30 AM 8:45 AM	·	8:45 AM 9:00 AM	0	129 116	1	0 3	0	2	1	167 134	0	0	0	0		300 254
							HOUR	LY TOT	ALS							
7:00 AM 7:15 AM		8:00 AM 8:15 AM	0	499 589	3	2	0	5 5	2	899 1015	0	0	0	0		1,41 1,61
7:30 AM 7:45 AM		8:30 AM 8:45 AM	0	631 647	3	7 5	0	5	3 4	1002 863	0	0	0	0		1,65 1,52
8:00 AM		9:00 AM		554	1	8	0_	3	3_	713	0	0	0	0		1,28
lane	Confi	guration		0.75			0.50		T	0.82	T		#DIV/0	!	T	Over
ו במוול	COLLIN	Julianon	1	0.70	1	1		1	4		the transfer	The state of the state of	I #DIV/0	4		0.

roject:		151-016		C	Control				S	urvey Da	te:	12/18/20		DAY:	Wedne	esday
-S Appro	ach:	Brookdale							S	urvey Tir		4:00P		Го	6:00	PM
-W Appro		Carmel Val	ley						C	ity: C	armel Va	illey	W	eather:	gia (te vi	
								A								
	AK HO		Br	ookdale			•				Arrival	/ Departu	ire Volu	mes		
:45 PM	то	5:45 PM									9	DUE - #1	ומשט			
			0	0	0		्रव	North			Г	PHF = #I	DIV/U!			
		-	- 1								1	0	0			
			الد	V							 	1				
r				1								V	T			
e c	0		7	OTAL		R	0	20	Γ	591	4-			—	589	
Vall	4450		-	1,755	Ī	4	586		PHF =	591					0.00	PHF =
ie l	1150		: ****				360		0.92	1157				→	1154	0.96
Carmel Valley	7	— <u></u>			· [F	3		L							
L	.,,											\downarrow	A			
			▼	A	*						-					
												10	9		PHF =	0.94
			5	0	4						L	PHF = (1.56			
		_	1	1									.,			
			-	astbound	- 1	No	orthbound	1	١٨.	/estbound	1	So	uthbour	nd		
From	me Per	To	Left	Thru	Right	Left		Right	Left	Thru	Right	Left	Thru	Right		Tota
FIOH		10 1	LOW	11114	Tugin			EY DAT								
4:00 PM		4:15 PM		1												0
4:00 PM		4:30 PM														0
4:30 PM		4:45 PM														0
4:45 PM	-	5:00 PM														0
5:00 PM		5:15 PM														0
5:15 PM		5:30 PM												<u> </u>	1	0
5:30 PM	: 	5:45 PM						_,,_,								0
5:45 PM		6:00 PM														1 0
							TOTAL	BY PEF	r						1	T and
4:00 PM		4:15 PM		207	3	3	0	1	2	153	0	0	0	0		369
4:15 PM		4:30 PM		230	2	2	0	0	0	161	0	0	0	0	1	395 433
4:30 PM		4:45 PM		299	1	-0	0	3	1	129	0	0	0	0	-	44:
4:45 PM		5:00 PM		295	3	1	0	1	0	143	0	0	0	0	 	40
5:00 PM		5:15 PM		253	3	2	0	0	0	139 153	0	0	0	0	1	46
5:15 PM		5:30 PM	-	315 287	0	2	0	2	1	151	0	0	0	0		44
5:30 PM		5:45 PM 6:00 PM		244	2	1	0	1	1	121	0	0	0	0		37
E-AE DNA		O,00 F (V)		, <u>"</u>		<u> </u>		LY TOT		1			<u> </u>			
5:45 PM			0	1031	9	6	0	5	3	586	0	0	0	0		1,6
		E-OO DIA		1001	3	5	0	5	3	572	0	0	0	0	7	1,6
4:00 PM		5:00 PM		1077	Q	1 23					+			+	7	1,7
4:00 PM 4:15 PM		5:15 PM	0	1077	9		0	5	3	564	0	0	0	0	3	1,7
4:00 PM 4:15 PM 4:30 PM	 	5:15 PM 5:30 PM	0	1162	8	3	0	5 4	3	564 586	0	0	0	0		At .
4:00 PM 4:15 PM 4:30 PM 4:45 PM	 	5:15 PM 5:30 PM 5:45 PM	0 0								+	1				1,7
4:00 PM 4:15 PM 4:30 PM	 	5:15 PM 5:30 PM	0 0	1162 1150	8 7	3 5	0	4	3	586	0	0	0	0		1,7
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	 	5:15 PM 5:30 PM 5:45 PM	0 0	1162 1150	8 7	3 5	0	4	3	586	0	0	0	0		1,7 1,6


Project: 151-016 Control								Survey D		12/18/		DAY:	Wedn			
N-S Approach: Dorris										Survey T		7:00		То	9:00	DAM
E-W Approach: Carmel Valle			ey							City:	Carmel V	alley	W	eather:		
								A								
PE/	AK HO			Dorris				T			Arriva	l / Depar	ture Volu	imes		
7:15 AM	то	8:15 AM						'								
			0	0	0			North			r	PHF = :	#DIV/0!			
		-			 							0	0			
		1		1							-					
ŕ				<u>, , , , , , , , , , , , , , , , , , , </u>								₩	1			
>	0				1	<u> </u>	0		ſ					· · · · · · · · · · · · · · · · · · ·		1
Carmel Valley				TOTAL	·				PHF≔	784	◀-			◀	742	PHF =
<u> </u>	416		L.	1,425		◀	686		0.77				Ì			0.89
Ę -					-				0.17	555	→			-	446	0.00
Ö	139	4					56	000	ı			1	_			1
Ļ		1, ,		· 1								▼	T			
		1		1	7							405	400			
		H										195	128		PHF =	0.95
			98	0	30							PHF =	0.76	1	, , , , , , , , , , , , , , , , , , , 	
		L			العبندنديي											
Ti.	me Per	ind T	E	astbound	1	N	orthbound	1	V	Vestbour	ıd	s	outhbour	nd		
From	ile rei	To	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Total
1 10111	*****							EY DA	TA							
7.00 414	عينبنت	7:15 AM	0	55	14	15	0	2	20	155	0					261
7:00 AM 7:15 AM		7:15 AM 7:30 AM	0	131	36	37	0	5	37	327	0					573
7:15 AW 7:30 AM		7:45 AM	0	219	71	71	0	13	52	520	0	- 1 1 - 1 - 1	 			946
7:45 AM		8:00 AM	0	325	119	91	0	20	62	695	0					1,312
8:00 AM		8:15 AM	0	471	153	113	0	32	76	841	0					1,686
8:15 AM		8:30 AM	0	593	180	131	0	41	88	963	0					1,996
8:30 AM		8:45 AM	0	678	202	147	0	46	97	1,080	0					2,250
8:45 AM	war	9:00 AM	0	740	226	162	0	49	108	1,185	0				<u> </u>	2,470
							TOTAL	BY PE	RIOD							
7:00 AM		7:15 AM	0	55	14	15	0	2	20	155	0	0	0	0		261
7:15 AM		7:30 AM	0	76	22	22	0	3	17	172	0	0	0	0		312
7:30 AM		7:45 AM	0	88	35	34	0	8	15	193	0	0	0	0	1	373
7:45 AM		8:00 AM	0	106	48	20	0	7	10	175	0	0	0	0		366
8:00 AM		8:15 AM	0	146	34	22	0	12	14	146	0	0	0	0		374
8:15 AM		8:30 AM		122	27	18	0	9	12	122	0	0	0	0	1	310
8:30 AM		8:45 AM	0	85	22	16	0	5	9	117	0	0	0	0		254
8:45 AM		9:00 AM	0	62	24	15	0	3	11	105	0	0	0	0		220
							HOUR	LY TOT	ALS							
7:00 AM		8:00 AM	0	325	119	91	0	20	62	695	0	0	0	0		1,312
7:15 AM		8:15 AM		416	139	98	0	30	56	686	0	0	0	0		1,425
7:30 AM		8:30 AM		462	144	94	0	36	51	636	0	0	0	0		1,423
7:45 AM		8:45 AM		459	131	76	0	33	45	560	0	0	0	0		1,304
8:00 AM		9:00 AM		415	107	71	0	29	46	490	0	0_	0	0		1,158
																
Lane	Confi	guration		0.77	 		0.76			0.89			#DIV/0	1!		Overa
1		Factor	#DIV/0!		0.72	0.72	#DIV/0!	0.63	0.82	0.89	#DIV/0	! #DIV/0		! #DIV/0	!	0.9
<u></u>		, 40.0.	1			1								~		



Project:		151-016 Control												DAY:	AY: Wednesday	
N-S Appro	- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						(Survey Time: 7:00AM To				То	9:00AM			
E-W Approach: Carmel Valley								· · · · · · · · · · · · · · · · · · ·	(City:	Carmel \	/alley	W	/eather:	·	
								A		,						
PE	AK HO	UR	Laur	reles Gra	de			+ 1		,	Arriva	l / Depar	ture Volu	ımes		1
7:30 AM	TO	8:30 AM						1 1								
			120	0	104			North				PHF = 1	0.90			
			120		,,,,,							224	320			
		1		11	1. 1]								1
,				Y	*							+	A			
	91				1	L	229		ŕ	<u> </u>	1	<u> </u>	-1-1			
Carmel Valley		ļ	T	TOTAL	-					682	—			←	791	
<u> </u>	324	 →	1	1,430		←	562		PHF =			No.	4			PHF =
					-				0.80	415	-			-	428	0.85
වී	0						0		L		L	η				
L		1				1	أحبي					▼	1			
			7	A	₹											
			1 1	- 1	- 1							0	0	. 3	PHF =	0.07
			0	. 0	0							DUE -	#DIV/0!		FIII -	0.57
		1	1		السبسسا							T-FALL -	#DIVIO:			
<u> </u>		• 1		astbound	<u> </u>	Ala	orthbour		14	/estbou	nd	0	outhbour		r i	
li .	ime Per		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Total
From		То	Leit	11110	Right	Len		VEY DAT		11010	Tigit	Leit	THIC	ragne	<u> </u>	i i otai
							SUK	VET DA			T	65			i -	
7:00 AM	***	7:15 AM	16	25	0				0	80	42	25 53	0	32 67		220
7:15 AM	-	7:30 AM	35	53	0				0	212 382	93 155	75	0	107		513 870
7:30 AM		7:45 AM	55 79	96 167	0				0	519	227	96	0	138		1,226
7:45 AM		8:00 AM 8:15 AM	106	267	-			., ., ., .	0	649	282	124	0	165	 	1,593
8:00 AM		8:30 AM	126	377	0				0	774	322	157	0	187	ĺ	1,943
8:15 AM 8:30 AM		8:45 AM	144	469	0				0	875	358	185	0	205		2,236
8:45 AM		9:00 AM	163	549	0				0	974	393	215	0	221	1	2,515
0.43 AW		0,007,00	100		لستنب		TOTAL	BY PER	NOD							1 7/2 2 2
7.00 414		7.45 114	16	25				0		80	42	25	0	32	T	220
7:00 AM		7:15 AM 7:30 AM	16 19	25 28	0	0	0	0	0	132	51	28	0	35	1	293
7:15 AM		7:30 AIVI 7:45 AM		43	0	0	0	0	0	170	62	22	0	40		357
7:30 AM 7:45 AM		8:00 AM		71	0	0	0	0	0	137	72	21	0	31		356
8:00 AM		8:15 AM		100	0	0	0	0	0	130	55	28	0	27		367
8:15 AM		8:30 AM		110	0	0	0	0	0	125	40	33	0	22		350
8:30 AM		8:45 AM		92	0	0	0	0	0	101	36	28	0	18		293
8:45 AM		9:00 AM		80	0	0	0	0	0	99	35	30	0	16	1	279
0.1074			<u> </u>	<u> </u>				RLY TOT			, 	4				
7:00 AM		8:00 AM	79	167	0	0	0	0	0	519	227	96	0	138	1	1,226
11		8:15 AM		242	0	0	0	0	0	569	240	99	0	133	1	1,373
7:15 AM 7:30 AM		8:30 AM		324	0	0	0	0	0	562	229	104	0	120	1	1,430
7:45 AM		8:45 AM	 	373	0	0	0	0	0	493	203	110	0	98	1	1,366
8:00 AM		9:00 AM		382	0	0	0	0	0	455	166	119	0	83		1,289
0.00 AW					<u> </u>	<u> </u>		1	1					1 T.		· · · · ·
 	. C - r	- Inchina	ī	0.80	1	1	#DIV/0	li		0.85	1		0.90	1	1	Overall
1		guration Eactor	0.84	0.80	#DIV//01	·			#DIV/0!		0.80	0.79	#DIV/0	0.75	1	0.97
L Pea	k Hour	1 actor	1 0.04	1 0.74	THUIVIU:	#DIVIO!	F-01-01-0	.η πωι ν /Ο	G### (470)	1 0.00	3.00	1 3.13	II W V U	., 5.,5		

roject:		151-016			Control		Speed L	imit	****	Survey Da		6/26/20		DAY:	Thurs	
N-S Approach: Laureles Gra		ade		Sign		40			Survey Time:		7:00 A		oordor:		9:00 AM	
-W Appro	ach:	Hwy 1					55			City: C	aramel		Re	corder:	V)
PEA	к но то	UR 8:00 AM	Laure	eles Grad	ie			1		: 	Arrival	/ Departi	ıre Volu	mes		
·			0	0	• <u> </u>			North				0	0			
£	0		Ī	7OTAL 2,576			1160			1386	4-			4	1402	
Hwy 1	137			÷.			242			743	->	-, 1		->	811	
L			*	↑	7	<u> </u>					-	379	431			
			226	0	205							5,5	', <u> </u>			
					,	\$4.	orthbound		1/1	Vestboun	 .	Sc	uthbour	ıd		
	me Pe			astbound	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Total
From		То	Left	Thru	Rigit	Leit		EY DAT		11110	. vig.v. j					
		7:15 AM					1					1			, A.S.	0
7:00 AM 7:15 AM		7:30 AM					- · · · · · · · · · · · · · · · · · · ·					······································				0
7:15 AM		7:45 AM														0
7:45 AM		8:00 AM													\$.	0
8:00 AM		8:15 AM														0
8:15 AM		8:30 AM														0
8:30 AM		8:45 AM														0
8:45 AM		9:00 AM								1						0
							TOTAL	BY PEF	RIOD							
7:00 AM		7:15 AM	0	135	32	45	0	39	62	295	0	0	0	0		608
7:15 AM		7:30 AM	0	166	26	69	0	60	60	320	0	0	0	0		701
7:30 AM		7:45 AM	0	186	35	73	0	60	65	317	0	0	0_	0		736
7:45 AM		8:00 AM	0	119	44	39	0	46	5 5	228	0	0	.0	0	<u> </u>	531
8:00 AM			0	175	30	42	0	48	43	268	0	0	0	0	1	606
8:15 AM				150	30	50	0	35	41	276	0	0	0	0		582
8:30 AM				184	29	71	0	35	33	251	0 -	0	0	0		603 451
8:45 AM		9:00 AM	0	129	32	31	0	31	42	186	1 0			1	1	1 751
					1	7		LY TOT		T		T ^		1 4		T 0 57
7:00 AM			·	606	137	226	0	205	242	1160	0	0	0	0	1	2,57
7:15 AM				646	135	223	0	214	223	1133	0	0	0	0	-	2,57 2,45
7:30 AM				630	139	204	0	189	204	1089	0	0	0	0	-	2,43
7:45 AM				628	133	202	0	164	172	1023	0	0	0	0	1	2,32
8:00 AM		9:00 AM	0	638	121	194	0	149	159	981	1 0	1 0	1 0	1 0	.1	1, 2,2
L									1	_		1	T	-	T	TA
		iguration		1	-	 	1	1		1 221	#D0 220	400.40	400.00	1 450 00	1	Over
Pea	ık Hou	r Factor	#DIV/0	! 0.81	0.78	0.77	#DIV/0!	0.85	0.93	0.91	#DIV/0	#DIV/0	ון#טוע#ןו	:: #DIV/C	и	0.8

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***************** Intersection #1 Highway 1/Carpenter Street ************************ Cycle (sec): 100 Critical Vol./Cap. (X): 0.873 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 98 Level Of Service: ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 2 0 1 2 0 0 1 0 1 1 0 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 51 1424 18 21 1442 738 419 10 11 40 25 8.3 PHF Adj: 0.85 0.85 0.85 0.84 0.84 0.84 0.85 0.85 0.95 0.95 0.95 _____ Saturation Flow Module: Lanes: 1.00 1.98 0.02 1.00 2.00 1.00 2.00 0.48 0.52 1.23 0.77 1.00 Final Sat.: 1805 3745 47 1805 3800 1615 3610 833 917 2268 1418 1615 Capacity Analysis Module: Vol/Sat: 0.03 0.45 0.45 0.01 0.45 0.54 0.14 0.01 0.01 0.02 0.02 0.05 **** **** Crit Moves: **** AdjDel/Veh: 114.1 12.5 12.5 94.9 14.1 24.0 55.2 36.2 36.2 45.6 45.6 98.1 DesignQueue: 3 38 0 1 41 21 24 1 1 2 1 5

	· ·-											
	, :											
		L	evel O	f Serv	ice C	omputat	ion R	eport				
	2000	HCM O	perati	ons Me	thod	(Base V	/olume	Alte	rnativ	e)	e di dede de de	an ang kanalang ang ang ang ang

Intersection	#1 Hi	ghway	1/Car	penter	Stre	et						to the about about
******	****	****	*****	*****						*****	****	*****
Cycle (sec):		120			C	ritica.	l Vol.	/Cap.	(X):		0.99	
Loss Time (se	c):	12	(Y+R	= 4 8	ec) A	verage	Delay	(sec	/veh):		39.	
Optimal Cycle	:	180			L	evel 0:	f Serv	ice:				D
*********	****	****	****	****	****	****	*****	****	****	****	****	****
Approach:	Nor	th Bo	und	Sou	ith Bo	und	Ea	st Bo	und		st Bo	
Movement	L -	т	- R	L -	T	- R	L -	T	- R		T	
					· · · · · · · · ·						, <u>.</u> ,	
Control:		otect			otect		Spl	it Ph	ase	Spl	it Ph	ase
Rights:		Inclu			Inclu		-	Inclu	de		Inclu	de
Min. Green:	0	.0	0	0	0	10	0	0	0	0	0	0
Lanes	1 () 1	1 0	1 (2	0 1		0				0 1
		·					1					
Volume Module		Count	Date:	18 De	c 200	2 << 2	:15-3:	15 PM	Peak	Hour		
Base Vol:		2158	32		1598	664	690	8	37	24	11	53
Growth Adj:	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		2158	32		1598	664	690	8	37	24	11	53
User Adj:		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:		0.96	0.96		0.87	0.87	0.84		0.84	0.76	0.76	0.76
PHF Volume:		2248	33		1837	763	821	10	44	32	14	70
	47	0	.0	0.	1037	.0	0	0	0	0	0	0
Reduct Vol:		2248	33		1837	763	821	10	44	32	14	7.0
Reduced Vol:			1.00		1.00	1.00	1.00		1.00		1.00	1.00
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	33		1837	763	821	10	44	32	14	70
Final Vol.:		2248										
	,		- 1	1			1			1 1		-1
Saturation F				110000	1000	1900	1:0:0:0	1900	1900	1900	1900	1900
Sat/Lane:		1900	1900		1900	0.85		0.88	0.88		0.97	0.85
Adjustment:		1.00	1.00		1.00			0.18	0.82		0.63	1.00
Lanes:		1.97	0.03		2.00	1.00	3610		1370		1155	1615
Final Sat.:		3737	55		3800	1615			1370			
					·		1			1:1		4
Capacity Ana					0 40	0 47	0 22	0 02	0.03	0.01	0.01	0.04
Vol/Sat:	0.02	0.60	0.60	****	0.48	0.47	****	0.03	0.03	0.01	U.UI	****
Crit Moves:		* * * *				0 60		0 22	λ :00	0 04	0.04	0.04
Green/Cycle:			0.61		0.60	0.60		0.23	0.23		0.29	0.99
Volume/Cap:		0.99	0.99		0.81	0.79		0.14	0.14			57.4
Uniform Del:			23.2		18.7	18.3		36.8	36.8		55.6	103.8
IncremntDel:			16.5	148.5		4.4	28.8	0.2	0.2			
Delay Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Delay/Veh:	118.9	39.7	-	207.3		22.7		36.9	36.9			161.1
User DelAdj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:	118.9			207.3		22.7		36.9	36.9			161.1
DesignQueue:			1	2		23	45		2			_
the control of the co	عداعد عداعه	4444	++++++	*****	****	****	*****	****	*****	****	****	****

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************* Intersection #1 Highway 1/Carpenter Street **************************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.799 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 67 Level Of Service: 16.8 ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ______
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 0 1 0 0 1
 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour 879 493 12 13 42 26 87 PHF Volume: 60 1675 21 25 1717 60 1675 21 25 1717 879 493 12 13 42 26 87 Final Vol.: ______ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.03 0.45 0.45 0.01 0.45 0.54 0.14 0.01 0.01 0.02 0.02 0.05 **** **** Crit Moves: **** Green/Cycle: 0.04 0.59 0.59 0.02 0.57 0.74 0.17 0.17 0.17 0.05 0.05 0.07 Volume/Cap: 0.80 0.76 0.76 0.80 0.74 0.80 0.08 0.08 0.37 0.37 0.79 Uniform Del: 33.3 10.7 10.7 34.2 12.0 5.3 27.9 24.4 24.4 32.2 32.2 32.1 1.6 66.6 2.2 2.5 7.3 0.1 0.1 1.2 1.2 30.4 IncremntDel: 43.5 1.6 DesignQueue: 2 30 0 1 33 10 16 0 -0 2 1 3 *********************

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #1 Highway 1/Carpenter Street ****************** Critical Vol./Cap. (X): 0.969 Cycle (sec): 120 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 178 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - RControl: Protected Protected Split Phase Split Phase Rights: Include Ovl Include Ovl Include Ovl Include Ovl 0 Min. Green: Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 1 0 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 39 2158 32 30 1598 664 690 8 37 24 0 0 0 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 41 2248 33 34 1837 0 0 763 821 10 44 32 14 70 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.95 0.88 0.88 0.97 0.97 0.85 Lanes: 1.00 1.97 0.03 1.00 2.00 1.00 2.00 0.18 0.82 1.37 0.63 1.00 Final Sat.: 1805 3737 55 1805 3800 1615 3610 296 1370 2520 1155 1615 Capacity Analysis Module: Vol/Sat: 0.02 0.60 0.60 0.02 0.48 0.47 0.23 0.03 0.03 0.01 0.01 0.04 **** *** Crit Moves: *** Green/Cycle: 0.03 0.62 0.62 0.02 0.61 0.85 0.23 0.23 0.23 0.02 0.02 0.04 Volume/Cap: 0.79 0.97 0.97 0.97 0.79 0.56 0.97 0.14 0.14 0.50 0.50 0.97 Uniform Del: 57.9 21.7 21.7 58.8 17.5 2.7 45.5 36.3 36.3 57.8 57.8 57.2 IncremntDel: 55.3 12.2 12.2 138.1 1.9 0.5 23.5 0.2 0.2 4.5 4.5 95.1 Delay/Veh: 113.2 33.8 33.8 196.8 19.4 3.2 69.0 36.5 36.5 62.3 62.3 152.4

AdjDel/Veh: 113.2 33.8 33.8 196.8 19.4 3.2 69.0 36.5 36.5 62.3 62.3 152.4 DesignQueue: 3 68 1 2 54 9 44 0 2 2 1 4

6 3

4

Tue Aug 5, 2003 11:22:06 Existing AM Peak . Paragrama and and and the second of the se Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) **************** Intersection #2 Highway 1/Ocean Avenue ***************** Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 73 Level Of Service: 24.3 ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 0 2 0 1 1 0 0 1 0 1 0 0 1 _____ Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour 107 113 51 36 PHF Adj: 0.89 0.89 0.89 0.95 0.95 0.95 0.92 0.92 0.65 0.65 0.65 PHF Volume: 172 1152 125 25 1306 200 272 54 116 174 78 55 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 172 1152 125 25 1306 200 272 54 116 174 78 Saturation Flow Module: Adjustment: 0.95 0.99 0.99 0.95 1.00 0.85 0.95 0.90 0.90 0.95 0.94 0.94 Lanes: 1.00 1.80 0.20 1.00 2.00 1.00 1.00 0.32 0.68 1.00 0.59 0.41 Final Sat.: 1805 3377 366 1805 3800 1615 1805 543 1163 1805 1045 737 _____ Capacity Analysis Module: Vol/Sat: 0.10 0.34 0.34 0.01 0.34 0.12 0.15 0.10 0.10 0.10 0.08 0.08 * * * * Crit Moves: **** **** Green/Cycle: 0.12 0.51 0.51 0.02 0.42 0.42 0.18 0.18 0.18 0.12 0.12 0.12 Volume/Cap: 0.83 0.67 0.67 0.83 0.30 0.83 0.55 0.55 0.83 0.65 0.65 Uniform Del: 30.3 12.8 12.8 34.0 18.2 13.7 27.6 26.0 26.0 30.2 29.5 29.5 IncremntDel: 23.2 0.9 0.9 37.8 3.8 0.3 15.9 2.1 2.1 23.0 6.9 6.9

AdjDel/Veh: 53.5 13.7 13.7 71.8 22.0 13.9 43.4 28.1 28.1 53.3 36.4 36.4

DesignQueue: 6 24 3 1 33 5 9 2

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ******************************** Intersection #2 Highway 1/Ocean Avenue **************** Critical Vol./Cap. (X): Cycle (sec): 120 12 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec, Optimal Cycle: 180 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 1 1 0 0 1 0 1 0 1 0
 1 0 0 1 0
 Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Initial Bse: 167 1762 64 12 1258 229 511 35 186 170 84 116 PHF Volume: 186 1958 71 14 1463 266 532 36 194 224 111 153 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.10 0.54 0.54 0.01 0.38 0.16 0.29 0.14 0.14 0.12 0.15 0.15 *** **** **** Crit Moves: Green/Cycle: 0.10 0.49 0.49 0.01 0.39 0.39 0.27 0.27 0.27 0.14 0.14 0.14

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ******************* Intersection #2 Highway 1/Ocean Avenue Cycle (sec): 60 Critical Vol./Cap. (X): 0.746 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 57 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Movement:
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< _____|___|___| Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 153 1025 111 24 1241 190 250 50 107 113 51 25 1306 200 272 54 116 174 78 55 0 0 0 0 0 0 0 0 0 0 125 PHF Volume: 172 1152 Reduct Vol: 0 0 125 25 1306 200 272 54 116 174 78 55 0 Reduced Vol: 172 1152 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.10 0.34 0.34 0.01 0.34 0.12 0.09 0.09 0.07 0.07 0.07 0.03 Crit Moves: **** **** **** Green/Cycle: 0.13 0.57 0.57 0.02 0.46 0.46 0.12 0.12 0.12 0.09 0.09 0.09 Volume/Cap: 0.75 0.60 0.60 0.60 0.75 0.27 0.75 0.75 0.60 0.75 0.75 0.37 Uniform Del: 25.2 8.6 8.6 29.0 13.3 10.0 25.5 25.5 25.0 26.6 26.6 25.6 IncremntDel: 12.5 0.5 0.5 22.4 1.8 0.2 6.9 6.9 5.2 8.8 8.8 1.6

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************* Intersection #2 Highway 1/Ocean Avenue ****************** Cycle (sec): 80 Critical Vol./Cap. (X): Loss Time (sec): 12 (Y+R = 4 sec) Average | Level Of Service: 112 | Level Of Service: 12 (Y+R = 4 sec) Average Delay (sec/veh): ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Rights: Include Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour 229 511 35 186 170 84 116 Reduct Vol: Reduced Vol: 186 1958 71 14 1463 266 532 36 194 224 111 153 MLF Adj: Final Vol.: 186 1958 71 14 1463 266 532 36 194 224 111 153 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.54 0.54 0.01 0.38 0.16 0.16 0.16 0.12 0.09 0.09 **** **** *** Crit Moves: Green/Cycle: 0.12 0.57 0.57 0.01 0.46 0.46 0.17 0.17 0.17 0.10 0.10 Volume/Cap: 0.84 0.94 0.94 0.94 0.84 0.36 0.94 0.94 0.72 0.90 0.90 0.94 DesignQueue: 7 43 2 1 39 7 21 1 7 9 5 6

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to TJKM, PLEASANTON, CA

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) *************** Intersection #3 Highway 1/Carmel Valley Road ************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.593 Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 31 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ____ Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 0 361 44 894 554 0 0 0 0 0 ______ Saturation Flow Module: Adjustment: 1.00 1.00 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.85 ~_----| Capacity Analysis Module: Vol/Sat: 0.00 0.22 0.03 0.27 0.31 0.00 0.00 0.00 0.00 0.00 0.32 Crit Moves: **** Green/Cycle: 0.00 0.37 0.37 0.45 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.53 Volume/Cap: 0.00 0.59 0.09 0.59 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.59 Uniform Del: 0.0 15.3 12.4 12.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 IncremntDel: 0.0 1.4 0.1 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 AdjDel/Veh: 0.0 16.7 12.4 13.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 10.2 DesignQueue: 0 9 1 19 4 0 0 0 0 0 0 17

Externity Fit Feat. The May 5, 2005 12-1-1-1

Level Of Service Computation Report											
2000 HCM Operations Method (Base Volume Alternative)											

Intersection #3 Highway 1/Carmel Valley Road											
Cycle (sec): 90 Critical Vol./Cap. (X): 0.893											
Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 26.6											
Optimal Cycle: 87 Level Of Service: C											

Approach: North Bound South Bound East Bound West Bound											
Movement: L - T - R L - T - R L - T - R											
Proveniere.											
Control: Protected Protected Split Phase Split Phase											
Rights: Include Include Ovl											
Min. Green: 0 0 0 0 0 0 0 0 0 0 0											
Lanes: 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 2											
Lanes:											
Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour											
Base Vol: 0 657 41 1151 589 0 0 0 0 0 1266											
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Initial Bse: 0 657 41 1151 589 0 0 0 0 0 1266											
Initial Bae: 0 037 11 1131 302 1 00 1 00 1 00 1 00 1 00											
USET Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.											
Fire Aug. 0.75 0.75 0.75 0.75											
PHF VOLUME: 0 632 32 1275 034											
Reduct Vol. 0 0 1279											
Reduced Vol. 0 552 52 120 1 00 1 00 1 00 1 00 1 00 1											
PCE Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.											
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Final Vol.: 0 832 52 1279 654 0 0 0 0 0 1279											
11											
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190											
Sat/ Halle: 1900 1900 1900 1900 1900 1900 1900 190											
Adjustment: 1.00 1.00 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Halles. 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.											
Final Sat.: 0 1900 1615 3610 1900 0 0 0 0 0 3230											
Capacity Analysis Module: Vol/Sat: 0.00 0.44 0.03 0.35 0.34 0.00 0.00 0.00 0.00 0.00 0.40											
Vol/Sat: 0.00 0.44 0.03 0.33 0.34 0.00 0.00 0.00											
CITC 4-0VES.											
Green/Cycle: 0.00 0.49 0.49 0.40 0.89 0.00 0.00 0.00 0.00 0.00											
Volume/Cap: 0.00 0.39 0.07 0.39 0.39											
UNITOIM Del: 0.0 20.6 12.1 23.4 0.5											
Incremitable: 0.0 10.9 0.0 7.3 0.1 0.0 0.00 0.00 0.00 0.00 1.00											
Delay Adj: 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Delay/ven: 0.0 31.7 12.1 32.9 1.0 0.0 1.00 1.00 1.00											
Oser DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Adjbet/ven: 0.0 31.7 12.1 32.9 1.0											
DesignQueue: 0 24 1 42 4 0 0 0 0 0 0 39											

```
Level Of Service Computation Report
      2000 HCM Operations Method (Base Volume Alternative)
Intersection #4 Highway 1/Rio Road
***************
Cycle (sec): 60 Critical Vol./Cap. (X): 0.605
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 44 Level Of Service:
**************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
Volume Module: >> Count Date: 18 Dec 2002 << 7:45-8:45 AM Peak Hour
0.74 0.74 0.74 0.92 0.92 0.92 0.79 0.79 0.79 0.83 0.83
PHF Volume: 55 150 93 364 141 113 224 353 47 128 342 139 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 55 150 93 364 141 113 224 353 47 128 342
MLF Adi:
Final Vol.: 55 150 93 364 141 113 224 353 47 128 342
Saturation Flow Module:
_____|
Capacity Analysis Module:
Vol/Sat: 0.03 0.08 0.06 0.10 0.14 0.14 0.12 0.11 0.11 0.07 0.18 0.09
Crit Moves: **** ****
                      ****
Green/Cycle: 0.05 0.13 0.13 0.17 0.24 0.24 0.21 0.30 0.30 0.20 0.30 0.30
Volume/Cap: 0.59 0.61 0.44 0.61 0.59 0.59 0.61 0.35 0.35 0.35 0.61 0.29 Uniform Del: 27.8 24.6 24.1 23.2 20.0 20.0 21.6 16.3 16.3 20.7 18.0 16.2
DesignQueue: 2 4 3 10 4 3 6 8 1 3 8 3
*************************
```

Existing PM Peak Tue Aug 5, 2003 11:24:41

							ion De	nort				
Level Of Service Computation Report												
2000 HCM Operations Method (Base Volume Alternative)												
	2000 ncm operations method (2006 volume 112 - 2006 x x x x x x x x x x x x x x x x x x											
Intersection	Intersection #4 Highway 1/Rio Road											
$\alpha \rightarrow 1$ $\alpha \rightarrow $												
7 05 0												
Optimal Cycle: 58 Level Of Service:												
					th Bo			st Boı		Wes	st Bou	ınd
Approach:		th Bo			Т			T ·		L -		
Movement:	Ъ -	\mathbf{T}	- K	і —	1	K			1			
				D~	otect	od 	Dr	otect	-d	Pro	otecte	ed '
Control:	Pr	otect			Inclu			Inclu			Includ	
Rights:	_	Inclu		0		ue 0	0	0	.0	0	0	0
Min. Green:	0	0	0				1 0		1 0	1 0) 1
Lanes:	1 0	1 1	0 1	2 0	,U	T 10	1					
				10 D-	- 200		.45_4.	45 DM	Peak	u Hour		4
Volume Module			Date:	18 DE	151	68	140	441	37	166	518	471
Base Vol:	93	201	55	315		1.00	1.00		1.00	1.00		1.00
Growth Adj:	1.00		1.00	1.00		68	140	441	37	166	518	471
Initial Bse:	93	201	55	315	151	1.00	1.00		1.00	1.00		1.00
User Adj:	1.00		1.00	1.00		0.91	0.86		0.86	0.96		0.96
PHF Adj:	0.90		0.90	0.91		75	163	513	43	173	540	491
PHF Volume:	103	223	61	346	166	/.5	103	212	0	0	0	0
Reduct Vol:	0	0	0	0	0	75	163	513	43	173	540	491
Reduced Vol:	103	223	61	346	166	1.00	1.00	-	1.00	1.00		1.00
PCE Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
MLF Adj:		1.00	1.00	1.00		75	163	513	43	173	540	491
Final Vol.:		223	61	346	166							
				1			1		4	f.		
Saturation F				1000	1.000	1900	1.000	1900	1900	1900	1900	1900
Sat/Lane:		1900	1900		1900			0.99	0.99	0.95		0.85
Adjustment:		1.00	0.85		0.95	0.95		1.85	0.15	1.00		1 00
Lanes:		1.00	1.00		0.69	0.31 562		3464	291		1900	1615
Final Sat.:		1900	1615		1248	:56:2 	. — . – . – .					
	-1		,						, ,	1-3		4
Capacity Ana	-			0 10	0 10	0 15	0.00	0.15	0.15	0 10	0.28	0.30
Vol/Sat:	0.06	0.12	0.04	****	0.13	0.13	****	0.15	0.13	0.10	0.20	***
Crit Moves:		****			0 00	0 00		0.32	0.32	0.20	0.40	0.40
Green/Cycle:			0.15		0.20	0.20			0.32		0.71	0.76
Volume/Cap:		0.76	0.24		0.68	0.68		0.47	16.5		15.1	15.5
Uniform Del:			22.3		22.3	22.3		16.5	0.3	1.0	3.1	5.2
IncremntDel:			0.5	7.3	5.1	5.1	14.5	0.3	1.00		1.00	1.00
Delay Adj:		1.00	1.00		1.00	1.00		1.00			18.2	20.7
Delay/Veh:		35.2	22.8		27.5	27.5		16.8	16.8 1.00		1.00	1.00
User DelAdj:			1.00		1.00	1.00		1.00			18.2	20.7
AdjDel/Veh:		35.2	22.8		27.5	27.5		16.8	16.8	22.0 5		20.7
DesignQueue:	.3	6	2	10	5	2	5	12				
*******	****	****	* * * * * * *	****	****	***	* * * * * * *	~ * * * * *	M - M - M - M - M - M -			

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) *************** Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard Cycle (sec): 60 Critical Vol./Cap. (X): 0.566 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 42 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 1
 0
 1
 0
 1
 0
 1
 0
 2
 0
 2
 0
 2
 0
 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 108 7 273 24 12 40 23 683 221 426 766 11 PHF Adj: 0.82 0.82 0.82 0.76 0.76 0.76 0.84 0.84 0.84 0.88 0.88 0.88 PHF Volume: 132 9 333 32 16 53 27 813 263 484 870 13 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 132 9 333 32 16 53 27 813 263 484 870 13 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.04 0.04 0.21 0.03 0.03 0.03 0.02 0.21 0.16 0.13 0.23 0.01 **** *** **** Crit Moves: Green/Cycle: 0.13 0.13 0.36 0.06 0.06 0.06 0.04 0.38 0.38 0.24 0.58 0.58 Volume/Cap: 0.30 0.30 0.57 0.45 0.45 0.57 0.40 0.57 0.43 0.57 0.40 0.01 Uniform Del: 23.8 23.8 15.3 27.3 27.5 28.2 14.8 13.9 20.2 7.0 5.4 IncremntDel: 0.4 0.4 1.3 3.0 3.0 7.9 3.7 0.5 0.5 0.9 0.1

AdjDel/Veh: 24.1 24.1 16.6 30.3 30.3 35.4 31.9 15.3 14.3 21.1 7.1 5.4 DesignQueue: 4 0 7 1 0 2 1 18 6 13 13 0

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************ Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard ************************* Critical Vol./Cap. (X): 0.799 Cycle (sec): 70 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 67 Level Of Service: ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 421 24 525 16 18 6 20 798 387 519 854 Initial Bse: 421 24 525 16 18 6 20 798 387 519 854 PHF Adj: 0.95 0.95 0.95 0.67 0.67 0.67 0.82 0.82 0.82 0.91 0.91 0.91 9 24 973 0 0 0 9 24 973 PHF Volume: 443 25 553 24 27 472 570 938 Saturation Flow Module: Adjustment: 0.96 0.96 0.85 0.98 0.98 0.85 0.95 1.00 0.85 0.95 1.00 0.85 Lanes: 1.89 0.11 1.00 0.47 0.53 1.00 1.00 2.00 1.00 2.00 1.00 Final Sat.: 3433 196 1615 874 983 1615 1805 3800 1615 3610 3800 1615 Capacity Analysis Module: Vol/Sat: 0.13 0.13 0.34 0.03 0.03 0.01 0.01 0.26 0.29 0.16 0.25 0.01 **** *** *** Crit Moves: Green/Cycle: 0.23 0.23 0.43 0.03 0.03 0.03 0.03 0.37 0.37 0.20 0.53 0.53 AdjDel/Veh: 24.6 24.6 23.9 82.9 82.9 34.2 39.7 20.5 27.4 33.1 10.2 7.6 DesignQueue: 14 1 13 1 1 0 1 26 12 19 18 ***********************************

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) *************** Intersection #6 Carmel Valley Road/Rancho San Carlos Road ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.829 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 63 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 116 0 9 0 0 0 632 93 49 939 _____ Saturation Flow Module: Adjustment: 0.95 1.00 0.85 1.00 1.00 1.00 1.00 0.85 0.95 1.00 1.00 Final Sat.: 1805 0 1615 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.09 0.00 0.01 0.00 0.00 0.00 0.42 0.07 0.03 0.62 0.00 **** Crit Moves: **** Green/Cycle: 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.69 0.69 0.06 0.75 0.00 Volume/Cap: 0.83 0.00 0.07 0.00 0.00 0.00 0.00 0.61 0.11 0.61 0.83 0.00 Uniform Del: 26.3 0.0 24.2 0.0 0.0 0.0 0.0 5.0 3.1 27.7 5.1 0.0 IncremntDel: 25.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.9 0.0 10.5 4.2 0.0 Delay Adj: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 Delay/Veh: 51.6 0.0 24.4 0.0 0.0 0.0 0.0 5.8 3.2 38.2 9.3 0.0 AdjDel/Veh: 51.6 0.0 24.4 0.0 0.0 0.0 5.8 3.2 38.2 9.3 0.0 DesignQueue: 5 0 0 0 0 0 0 9 1 2 12 ***************

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************** Intersection #6 Carmel Valley Road/Rancho San Carlos Road ****************** Critical Vol./Cap. (X): 0.792 Cycle (sec): 60 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 57 Level Of Service: 9 (Y+R = 4 sec) Average Delay (sec/veh): ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 4:30-5:30 PM Peak Hour Base Vol: 89 0 31 0 0 0 01122 138 31 539 Initial Bse: 89 0 31 0 0 0 1122 138 31 539 PHF Adj: 0.94 0.94 0.94 1.00 1.00 1.00 0.98 0.98 0.98 0.93 0.93 0.93 PHF Volume: 95 0 33 0 0 0 0 1145 141 33 580 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 95 0 33 0 0 0 0 1145 141 33 580 0 33 580 Saturation Flow Module: Adjustment: 0.95 1.00 0.85 1.00 1.00 1.00 1.00 0.85 0.95 1.00 1.00 Final Sat.: 1805 0 1615 0 0 0 0 1900 1615 1805 1900 0 _____| Capacity Analysis Module: Vol/Sat: 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.60 0.09 0.02 0.31 0.00 **** **** Crit Moves: **** Volume/Cap: 0.79 0.00 0.31 0.00 0.00 0.00 0.00 0.79 0.11 0.79 0.39 0.00 Uniform Del: 27.6 0.0 26.7 0.0 0.0 0.0 0.0 4.3 1.9 29.2 2.0 0.0 IncremntDel: 29.3 0.0 1.6 0.0 0.0 0.0 0.0 3.1 0.0 64.6 0.2 0.0 AdjDel/Veh: 56.9 0.0 28.3 0.0 0.0 0.0 0.0 7.4 1.9 93.8 2.2 0.0 DesignQueue: 3 0 1 0 0 0 0 11 1 1 5

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ****************************** Intersection #7 Carmel Valley Road/Brookdale Drive ************* Average Delay (sec/veh): 0.7 Worst Case Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - RControl: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 7 0 5 0 0 0 631 3 3 1002 0 Initial Bse: 7 0 5 0 0 0 631 3 3 1002 0 PHF Volume: 14 0 10 0 0 0 0 841 4 4 1222
Reduct Vol: 0 0 0 0 0 0 0 0 0 0
Final Vol.: 14 0 10 0 0 0 0 841 4 4 1222 Critical Gap Module: FollowUpTim: 3.5 xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx ______ Capacity Module: Cnflict Vol: 2073 xxxx Move Cap : Level Of Service Module: 9.5 xxxx xxxxx LOS by Move: * * * * * * * * A * * LT - LTR - RT Movement: LT - LTR - RT. LT - LTR - RT LT - LTR - RT ApproachLos * ApproachLOS:

Tue Aug 5, 2003 11:24:41 Existing PM Peak Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ************************

Intersection #7 Carmel Valley Road/Brookdale Drive ****************************** Average Delay (sec/veh): 0.4 Worst Case Level Of Service: E ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 Volume Module: >> Count Date: 18 Dec 2002 << 4:45-5:45 PM Peak Hour Initial Bse: 5 0 4 0 0 0 0 1150 7 3 586 0 PHF Volume: 9 0 7 0 0 0 0 1250 8 3 610
Reduct Vol: 0 0 0 0 0 0 0 0 0 0
Final Vol.: 9 0 7 0 0 0 0 1250 8 3 610 0 Critical Gap Module: Capacity Module: Level Of Service Module: LOS by Move: * * * * * * * * * * * B * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT

MITIG8 - Existing AM Peak Tue Aug 5, 2003 11:42:31 Page 1-1

		:-:-									
	Level Of Service Computation Report										
2000 HCM Operations Method (Base Volume Alternative)											

Intersection	Intersection										
0.012 - 0.012 = 0.000											
Cycle (sec): 60 Critical Vol./Cap. (X) : 0.775 Loss Time (sec): 9 $(Y+R = 4 \text{ sec})$ Average Delay (sec/veh): 4.9											
		54	1 TTK -	- 4.5	T.	evel O	f Serv	ice	,,		A
Optimal Cycle	:: :::::::::::::::::::::::::::::::::::	±. +			****	****	*****	****	*****	*****	****
					th Bo			st Bo		West I	
Approach:		th Bo			Т			T		L - T	
Movement:	, Г -	T	- R	ы - -	1	- <u>a</u> x	بيد				
				0			Dr	otect	ed I	Protec	rted '
Control:	Spi		ase			ase	PI	Inclu			ude
Rights:		Inclu			Inclu		0		.0	0 (
Min. Green:	0	0	.0	0	0	0	_			1 0 1	, ი ი
Lanes:	0 0	1!	0 0	0 0	0, 0	0 0	0 0		1 0		• •
manes:										House	
Volume Modul						2 << 7					5 0
Base Vol:	7	0	5	0	0	0	0	631	3	3 100:	
Growth Adj:	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00 1.0	
Initial Bse:	.7	0	5	.0	.0	0	0	631	3	3 100	
User Adj:	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00 1.0	
PHF Adj:	0.50	0.50	0.50	1.00		1.00	0.75	-	0.75	0.82 0.8	
PHF Volume:	14	0	10	0	0	Ö	0	841	4	4 122	
Reduct Vol:	0	0	0	0	0	. 0	0	.0	0		0
Reduced Vol:	14	.0	10	0	0	0	0	841	4	4 122	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	
Final Vol.:	14	0	10	0	0	0	0	841	4	4 122	
	1			1				-:- -	- ,		
Saturation F	low Mo	odule:				•					
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900 190	0 1900
Adjustment:		1.00	0.92	1.00	1.00	1.00	1.00	1.00	1.00	0.95 1.0	0 1.00
Lanes:		0.00	0.42	0.00	0.00	0.00	0.00	0.99	0.01	1.00 1.0	0.00
Final Sat.:	1017	0	726	0	0	0	0	1889	9	1805 190	0 0
Capacity Ana				1			•				
Vol/Sat:		0.00	0.01	0.00	0.00	0.00	0.00	0.45	0.45	0.00 0.6	4 0.00
Crit Moves:	****	0.0.0					****			***	*
Green/Cycle:		0.00	0.02	000	0.00	0.00	0.00	0.83	0.83	0.00 0.8	3 0.00
Volume/Cap:		0.00	0.77		0.00	0.00		0.54	0.54	0.54 0.7	7 0.00
Uniform Del:		0.0	29.3	0.0	0.0	0.0	0.0	1.6	1.6	29.8 2.	4 0.0
IncremntDel:		0.0	73.6	0.0	0.0	0.0	0.0	0.4	0.4	65.5 2.	4 0.0
		0.00	1.00		0.00	0.00		1.00	1.00	1.00 1.0	0 0.00
Delay Adj:			102.9	0.00	0.0	0.0	0.0	2.0	2.0	95.4 4.	
Delay/Veh:	102.9		1.00		1.00	1.00	1.00		1.00	1.00 1.0	-
User DelAdj:			100	0.0	0.0	0.0	0.0	2.0	2.0	95.4 4.	
AdjDel/Veh:			102.9	0.0	0.0	0.0	0.0		2.0	0	8 0
DesignQueue:	0	0	ں۔ دگر جائے جانے								-
*****	****	^ X * X X		a .a · a · a · a ·							

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #7 Carmel Valley Road/Brookdale Drive ***************** Critical Vol./Cap. (X): 0.792 Cycle (sec): 60 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 57 Level Of Service: 9 (Y+R = 4 sec) Average Delay (sec/veh): ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 4:45-5:45 PM Peak Hour Base Vol: 5 0 4 0 0 0 01150 7 3 586 Initial Bse: 5 0 4 0 0 0 01150 7 3 586 3 610 0 Saturation Flow Module: Capacity Analysis Module: **** *** Crit Moves: **** Green/Cycle: 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.84 0.84 0.00 0.84 0.00 Delay Adj: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 Delay/Veh: 135.7 0.0 135.7 0.0 0.0 0.0 0.0 0.0 5.2 5.2 316.6 1.3 0.0 AdjDel/Veh: 135.7 0.0 135.7 0.0 0.0 0.0 0.0 5.2 5.2 316.6 1.3 0.0 DesignQueue: 0 0 0 0 0 0 0 8 0 0 4

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ****************** Intersection #8 Carmel Valley Road/Dorris Drive ***************** Average Delay (sec/veh): 9.4 Worst Case Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:15-8:15 AM Peak Hour PHF Volume: 129 0 39 0 0 0 0 540 181 63 771 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 129 0 39 0 0 0 0 540 181 63 771 181 63 771 0 ______ Critical Gap Module: ______ Capacity Module: 890 xxxx xxxxx _____ Level Of Service Module: LOS by Move: F * B * * * * * A * * LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT

*

F

ApproachLOS:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ****************** Intersection #8 Carmel Valley Road/Dorris Drive ***************** Average Delay (sec/veh): 6.5 Worst Case Level Of Service: F

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Rights: Include Includ Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Base Vol: 105 0 47 0 0 0 610 257 61 436 Initial Bse: 105 0 47 0 0 0 610 257 61 436 PHF Adj: 0.89 0.89 0.89 1.00 1.00 1.00 0.85 0.85 0.85 0.86 0.86 PHF Volume: 118 0 53 0 0 0 0 718 302 71 507 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 118 0 53 0 0 0 0 718 302 71 507 71 507 0 Critical Gap Module: Capacity Module: 688 XXXX XXXXX

Level Of Service Module: Stopped Del: 83.8 xxxx 14.5 xxxxx xxxx xxxxx xxxxx xxxxx 10.8 xxxx xxxxx LOS by Move: F * B * * * * * * * B * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT В *

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************* Intersection #8 Carmel Valley Road/Dorris Drive ******************* Cycle (sec): 60 Critical Vol./Cap. (X): 0.561 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 36 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 18 Dec 2002 << 7:15-8:15 AM Peak Hour PHF Volume: 129 0 39 0 0 0 0 540 181 63 771 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 129 0 39 0 0 0 0 540 181 63 771 _____ Saturation Flow Module: Final Sat.: 1805 0 1615 0 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.07 0.00 0.02 0.00 0.00 0.00 0.00 0.28 0.11 0.03 0.41 0.00 Crit Moves: **** Green/Cycle: 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.64 0.64 0.08 0.72 0.00 Volume/Cap: 0.56 0.00 0.19 0.00 0.00 0.00 0.00 0.44 0.17 0.44 0.56 0.00 Uniform Del: 24.6 0.0 23.4 0.0 0.0 0.0 5.3 4.3 26.4 3.9 AdjDel/Veh: 27.7 0.0 23.9 0.0 0.0 0.0 5.6 4.4 28.6 4.4 0.0 DesignQueue: 4 0 1 0 0 0 7 2 2 8 0 *******************

AdjDel/Veh: 28.8 0.0 25.1 0.0 0.0 0.0 0.0 6.0 4.3 33.1 3.0 0.0 DesignQueue: 4 0 2 0 0 0 0 9 4 2 5 0

ApproachLOS:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ************** Intersection #9 Carmel Valley Road/Laureles Grade ***************** Average Delay (sec/veh): 6.8 Worst Case Level Of Service: ************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 0 0 0 104 0 120 91 324 0 0 562 229 PHF Volume: 0 0 0 116 0 133 114 405 0 0 661 269 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 116 0 133 114 405 0 0 661 Critical Gap Module: _____ Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1294 xxxx 661 931 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxxx xxxxx 181 xxxx 466 743 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxxx 160 xxxx 466 743 xxxx xxxxx xxxx xxxx xxxx Level Of Service Module: Stopped Del:xxxxx xxxxx xxxxx 71.0 xxxxx 15.8 10.7 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * F * C B * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT XXXXXX ApproachDel:

E

ApproachLOS:

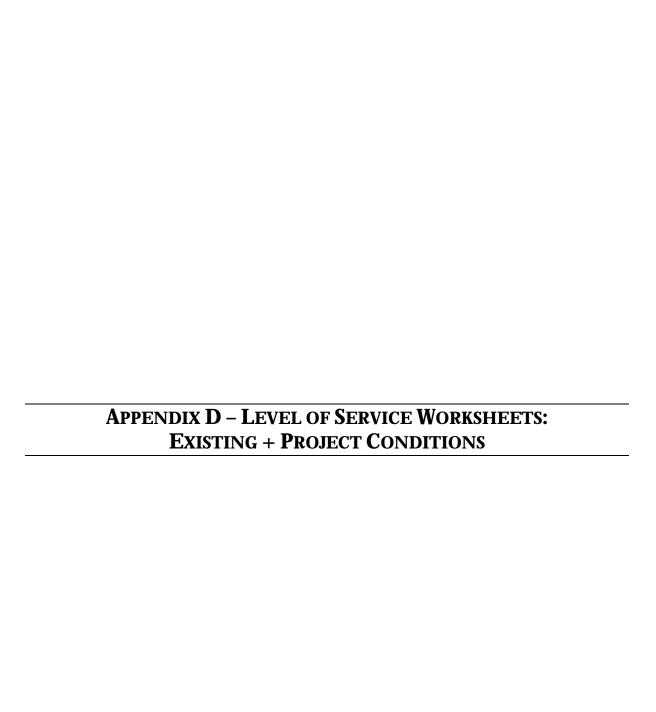
Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ***************** Intersection #9 Carmel Valley Road/Laureles Grade ************** Average Delay (sec/veh): 7.8 Worst Case Level Of Service: E ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Lanes: 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour _____| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxxx xxxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx Capacity Module: 390 545 xxxx xxxxx xxxx xxxx xxxx Cnflict Vol: xxxx xxxx xxxxx 1140 xxxx Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx 57.2 xxxx 11.5 9.2 xxxx xxxxx xxxx xxxxx xxxxx LOS by Move: * * * F * B A * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT A * * * * *

E

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************** Intersection #9 Carmel Valley Road/Laureles Grade ***************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.581 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 10.8 Optimal Cycle: 37 Level Of Service: B ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 0 0 0 1 0 0 0 0 1 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour PHF Volume: 0 0 0 116 0 133 114 405 0 0 661 269 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.06 0.00 0.08 0.06 0.21 0.00 0.00 0.35 0.17 **** Crit Moves: Green/Cycle: 0.00 0.00 0.00 0.14 0.00 0.14 0.11 0.71 0.00 0.00 0.60 0.60 Volume/Cap: 0.00 0.00 0.00 0.45 0.00 0.58 0.58 0.30 0.00 0.00 0.58 0.28 Uniform Del: 0.0 0.0 0.0 23.6 0.0 24.1 25.4 3.3 0.0 0.0 7.4 5.8 TracremptDel: 0.0 0.0 0.0 1.3 0.0 3.7 4.3 0.1 0.0 0.0 0.8 0.2 0 3 0 4 3 4 0 0 10 DesignQueue: 0 0

______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #9 Carmel Valley Road/Laureles Grade ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.447 9 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 30 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Base Vol: 0 0 0 125 0 105 159 342 0 0 328 130 PHF Volume: 0 0 0 134 0 113 181 389 0 0 390 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.07 0.00 0.07 0.10 0.20 0.00 0.00 0.21 0.10 **** **** Crit Moves: Green/Cycle: 0.00 0.00 0.00 0.17 0.00 0.17 0.22 0.68 0.00 0.00 0.46 0.46 Volume/Cap: 0.00 0.00 0.00 0.45 0.00 0.42 0.45 0.30 0.00 0.00 0.45 0.21 0.0 11.0 0.0 0.4Uniform Del: 0.0 0.0 0.0 22.5 0.0 22.4 20.1 3.8 0.0 *************************

Tue Aug 5, 2003 11:22:07 Page 11-1 Existing AM Peak Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************* Intersection #10 Highway 68/Laureles Grade ************************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.846 9 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 71 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Split Phase Split Phase Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 0 1 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 226 0 205 0 0 0 0 606 137 242 1160 Initial Bse: 226 0 205 0 0 0 0 606 137 242 1160 PHF Volume: 226 0 205 0 0 0 0 606 137 242 1160


Reduct Vol: 0 0 0 0 0 0 0 0 0 0

Reduced Vol: 226 0 205 0 0 0 0 606 137 242 1160 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 226 0 205 0 0 0 0

Reduced Vol:	226	0	205	0	0	0	0	606	137	_	TT00	.0
	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
Final Vol	226	0	205	0	0	10		606	137		1160	0
Final Vol.:												
Saturation F				•								
Sat/Lane:		1900	1900	1900	1900	1900	1900		1900	1900		1900
Adjustment:			0.85	1.00	1.00	1.00	1.00		0.85	0.95		1.00
Lanes:		0.00	1.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00		0.00
Time! Cat .	1805	·0	1615	0	0	-0		1900	1615	1805		0
rinai sac		_,					 -			1		
Capacity Ana												
Vol/Sat:		0.00	0.13	0.00	0.00	0.00		0.32	0.08	0.13		0.00
Crit Moves:			****				****				****	
Green/Cycle:	0.15	0.00	0.15	0.00	0.00	0.00		0.51	0.51			0.00
Volume/Cap:		0.00	0.85	0.00	0.00	0.00	0.00	0.63	0.17		0.85	0.00
Uniform Del:			29.0	0.0	0.0	0.0	0.0	12.4	9.3	25.0		0.0
IncremntDel:			23.1	0.0	0.0	0.0	0.0	1.3	0.1	3.3		0.0
		0.00	1.00	0.00	0.00	0.00	0.00	1.00	1.00		1.00	0.00
Delay/Veh:			52.1	0.0	0.0	0.0	0.0	13.8	9.4		12.1	0.0
User DelAdj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	
AdjDel/Veh:	48.5		52.1	0.0	0.0	0.0	0.0	13.8	9.4	28.3	12.1	
DesignOueue.	, a	٥	7	0	0	0	.0		:3	8	15	0
**********	****	****	*****	*****	****	*****	****	****	*****	****	****	*****

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***************** Intersection #10 Highway 68/Laureles Grade Cycle (sec): 70 Critical Vol./Cap. (X): 0.862 9 (Y+R = 4 sec) Average Delay (sec/veh): 17.4 Loss Time (sec): Optimal Cycle: 75 Level Of Service: В ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Split Phase Split Phase Protected Protected Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 152 0 258 0 0 0 0 1101 140 21 717 Saturation Flow Module: Adjustment: 0.95 1.00 0.85 1.00 1.00 1.00 1.00 0.85 0.95 1.00 1.00 Final Sat.: 1805 0 1615 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.16 0.00 0.00 0.00 0.08 0.09 0.01 0.38 0.00 *** *** Crit Moves: AdjDel/Veh: 26.3 0.0 49.3 0.0 0.0 0.0 0.0 15.1 4.2 155.9 6.0 0.0 DesignQueue: 5 0 8 0 0 0 0 17 2 1 10 0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #1 Highway 1/Carpenter Street ******************* Cycle (sec): 100 Critical Vol./Cap. (X): 0.873 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 99 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 0 0 1
 ______ Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour PHF Volume: 61 1699 21 25 1725 879 493 12 13 42 26 _____ Saturation Flow Module: Lanes: 1.00 1.98 0.02 1.00 2.00 1.00 2.00 0.48 0.52 1.23 0.77 1.00 Final Sat.: 1805 3746 47 1805 3800 1615 3610 833 917 2268 1418 1615 -----| Capacity Analysis Module: Vol/Sat: 0.03 0.45 0.45 0.01 0.45 0.54 0.14 0.01 0.01 0.02 0.02 0.05 **** Crit Moves: ****

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #1 Highway 1/Carpenter Street ******************* Cycle (sec): 120 Critical Vol./Cap. (X): 0.994 12 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/ven):
Optimal Cycle: 180 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 1 0 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 39 2158 32 30 1598 664 690 8 37 24 11 Initial Bse: 39 2158 32 30 1598 664 690 8 37 24 11 PHF Volume: 42 2261 33 34 1863 763 821 10 45 32 14 70 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 42 2261 33 34 1863 763 821 10 45 32 14 70 Final Vol.: 42 2261 33 34 1863 763 821 10 45 32 14 70 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.95 0.88 0.88 0.97 0.97 0.85 Lanes: 1.00 1.97 0.03 1.00 2.00 1.00 2.00 0.17 0.83 1.37 0.63 Final Sat.: 1805 3737 55 1805 3800 1615 3610 289 1375 2520 1155 1615 _____ Capacity Analysis Module: Vol/Sat: 0.02 0.61 0.61 0.02 0.49 0.47 0.23 0.03 0.03 0.01 0.01 0.04 Crit Moves: **** *** *** AdjDel/Veh: 121.4 40.7 40.7 209.3 21.3 22.6 76.0 37.1 37.1 56.6 56.6 162.8 DesignQueue: 3 70 1 2 57 23 45 0 2 2 1 4

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *********************************** Intersection #1 Highway 1/Carpenter Street *************** Critical Vol./Cap. (X): 0.802 Cycle (sec): 70 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 68 Level Of Service: 17.0 **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Movement:
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour PHF Volume: 61 1699 21 25 1725 879 493 12 13 42 26 87 0 0 0 0 0 0 Reduct Vol: 0 0 0 Reduced Vol: 61 1699 21 25 1725 879 493 12 13 42 26 MLF Adj: Final Vol.: 61 1699 21 25 1725 879 493 12 13 42 26 87 ______|___|___|___| Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.03 0.45 0.45 0.01 0.45 0.54 0.14 0.01 0.01 0.02 0.02 0.05 Crit Moves: **** * * * * *** Green/Cycle: 0.04 0.59 0.59 0.02 0.57 0.74 0.17 0.17 0.17 0.05 0.05 0.07 Volume/Cap: 0.80 0.77 0.77 0.77 0.80 0.74 0.80 0.08 0.08 0.37 0.37 0.79 Uniform Del: 33.2 10.8 10.8 34.2 12.1 5.3 27.9 24.4 24.4 32.2 32.2 32.1

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #2 Highway 1/Ocean Avenue ************ Cycle (sec): 70 Critical Vol./Cap. (X): 0.833 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 24.6 Optimal Cycle: 74 Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 153 1025 111 24 1241 190 250 50 107 113 51 Initial Bse: 153 1025 111 24 1241 190 250 50 107 113 51 36 PHF Volume: 174 1176 129 25 1314 200 272 54 117 175 78 55 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 174 1176 129 25 1314 200 272 54 117 175 78 55 Final Vol.: 174 1176 129 25 1314 200 272 54 117 175 78 55 Saturation Flow Module: Adjustment: 0.95 0.99 0.99 0.95 1.00 0.85 0.95 0.90 0.90 0.95 0.94 0.94 Lanes: 1.00 1.80 0.20 1.00 2.00 1.00 1.00 0.32 0.68 1.00 0.59 0.41 Final Sat.: 1805 3373 370 1805 3800 1615 1805 539 1165 1805 1045 737 Capacity Analysis Module: Vol/Sat: 0.10 0.35 0.35 0.01 0.35 0.12 0.15 0.10 0.10 0.10 0.08 0.08 Crit Moves: **** Crit Moves: **** Green/Cycle: 0.12 0.51 0.51 0.02 0.42 0.42 0.18 0.18 0.18 0.12 0.12 0.12 Volume/Cap: 0.83 0.68 0.68 0.68 0.83 0.30 0.83 0.56 0.56 0.83 0.64 0.64 Uniform Del: 30.3 12.9 12.9 34.1 18.3 13.7 27.7 26.1 26.1 30.2 29.5 29.5 IncremntDel: 23.8 1.0 1.0 41.7 3.9 0.3 16.5 2.3 2.3 23.7 6.7 6.7 AdjDel/Veh: 54.1 13.9 13.9 75.7 22.2 13.9 44.1 28.4 28.4 53.9 36.3 36.3 DesignQueue: 6 25 3 1 33 5 9 2 4 6 3

EXIS # PIOJ P												
			1 Of	Corre		omput at	ion Re	nort				
_	Level Of Service Computation Report											
2	2000 HCM Operations Method (Future Volume Alternative)											
Intersection	#2 Hi	ghway	1/Ocea	in Avei	nue	en en en de de de de		والموال المالية	والمهرمة المداملة والدارا		*****	****
*******	****	****	*****	****	* * * * *	*****		/	/ 1.2. /		1.106	=
Cycle (sec):		120			C:	ritical		Cap.	(X):		81.9	
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 81.9 Optimal Cycle: 180 Level Of Service: F												
		100			Ta	evel Of	Serv	ice:				
********	****	****	*****	****	****	****	****	****	*****	****		
Approach:	Nor	th Bo	und	Sou	th Bo	und	Eas	st Bo	und		st_Bo	
Massamant	<u>L</u> -	T	- R	L -	\mathbf{T}	- R	L ÷	T	- R .	. L -	T	R
Movement:										1		
Control:	Pr	otect	ed	Pr	otect	eđ	Spl	it Ph	ase	Spi	IC PII	ase
Rights:		Inclu	de		Inclu	de		Inclu	de		LIICIU	ac
Min. Green:			:0	.0	0	0			0	•	0	-0
T	1 0	1	1 0	1 0	2	0 1	1 0	0	1 0	1 0	0	1 0
Volume Module	ı ⊇:>>	Count	Date:	18 De	c 200	2 << 2	:30-3:	30 PM	Peak	Hour		
Base Vol:	167		64		1258	229	511	35	186	170	84	116
	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		1762	64		1258		511	35	186	170	84	116
Added Vol:	2	14	2	0	25	-0	0	0	3	4	0	0
PasserByVol:		0	0	ō	0	0	0	0	0	0	0	0
Initial Fut:	169		66		1283	229	511	35	189	174	84	116
User Adj:			1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:			0.90	0.86		0.86	0.96		0.96	0.76	0.76	0.76
PHF Volume:		1973	73		1492	266	532	3.6	197	229	111	153
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	.0
Reduced Vol:		1973	73		1492	266	532	36	197	229	111	153
	1.00		1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00
PCE Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00
		1973	73		1492	266	532	36	197	229	111	153
Final Vol.:	100	1913	ر. 1 ـ ـ ـ ـ ـ ـ ـ ـ ـ	1								
	. •			1			.1			1 1		·
Saturation F	1900		1900	1000	1900	1900	1900	1900	1900	1900	1900	1900
Sat/Lane:			1.00		1.00	0.85		0.87			0.91	
Adjustment:			0.07		2.00	1.00		0.16			0.42	0.58
Lanes:	1.00				3800			259	1400		729	1006
Final Sat.:	T802	3646	. T.3:0	1.005	3000		10.00					
							i I			1 4		·
Capacity Ana Vol/Sat:	TARIR	Modu.	Le:	0.01	0 20	0 16	0 20	0 14	0 14	0.13	0.15	0.15
Vol/Sat:	0.10		0.54	****	0.39	0.10	****	0.11	0.11	0.20	****	
Crit Moves:		***			0 20	0 30		0.27	0.27	0 1.2	0.14	0.14
Green/Cycle:			0.49		0.39	0.39			0.53		1.11	
Volume/Cap:		1.11	1.11		1.00	0.42		0.53	37.6		51.8	
Uniform Del:			30.6		36.5	26.5		37.6	1.2		89.8	
IncremntDel:				291.5		0.5	73.2	1.2			1.00	
Delay Adj:		1.00	1.00		1.00	1.00		1.00	1.00			141.5
- · · · · · · · · · · · · · · · · · · ·	119.6			351.1			117.2		38.8		1.00	
User DelAdj:			1.00		1.00	1.00		1.00	1.00			141.5
AdjDel/Veh:				351.1			117.2		38.8			
DesignQueue:	12	78	.3	1	67	11	28	2	10			
*******	****	****	* * * * * *	****	****	******		n n n n n	a commo como		200 000 000	

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #2 Highway 1/Ocean Avenue ******************* Critical Vol./Cap. (X): 0.751 Cycle (sec): 60 12 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): Optimal Cycle: 57 Level Of Service: В ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 1 1 0 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Initial Bse: 153 1025 111 24 1241 190 250 50 107 113 51 36 1 0 0 0 Added Vol: 2 22 4 0 7 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 1 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 174 1176 129 25 1314 200 272 54 117 175 78 55 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.10 0.35 0.35 0.01 0.35 0.12 0.09 0.09 0.07 0.07 0.07 0.03 *** *** *** Crit Moves: **** Green/Cycle: 0.13 0.57 0.57 0.02 0.46 0.46 0.12 0.12 0.12 0.09 0.09 Volume/Cap: 0.75 0.62 0.62 0.62 0.75 0.27 0.75 0.75 0.61 0.75 0.75 0.37 Uniform Del: 25.2 8.7 8.7 29.1 13.3 10.0 25.6 25.6 25.1 26.6 26.6 25.6 IncremntDel: 12.8 0.6 0.6 25.0 1.9 0.2 7.2 7.2 5.6 9.1 9.1 1.6 AdjDel/Veh: 38.0 9.2 9.2 54.0 15.2 10.2 32.7 32.7 30.8 35.6 35.6 27.2 DesignQueue: 5 19 2 1 26 4 8 2 5 2 2 4

AdjDel/Veh: 60.2 24.8 24.8 242.8 23.4 14.2 56.1 56.1 41.6 63.4 63.4 89.2 DesignQueue: 8 43 2 1 40 7 21 1 7 9 5 6

Page 4-1 Exis + Proj AM Peak Tue Aug 5, 2003 13:29:18 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************************** Intersection #3 Highway 1/Carmel Valley Road ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.604 Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 10.5 Optimal Cycle: 32 Level Of Service: B ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 0 361 44 894 554 0 0 0 0 0 906 Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.00 0.22 0.03 0.27 0.31 0.00 0.00 0.00 0.00 0.00 0.32 Crit Moves: **** ****

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to TJKM, PLEASANTON, CA

AdjDel/Veh: 0.0 17.2 12.7 13.3 1.8 0.0 0.0 0.0 0.0 0.0 10.1

0

0 0

DesignQueue: 0 9 1 19 4 0 0 0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************** Intersection #3 Highway 1/Carmel Valley Road ************************* Critical Vol./Cap. (X): 0.899 Cycle (sec): 90 Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 90 Level Of Service: ********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 Lanes:
 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 ______ Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.44 0.04 0.36 0.34 0.00 0.00 0.00 0.00 0.00 0.40 Crit Moves: **** **** Green/Cycle: 0.00 0.49 0.49 0.40 0.89 0.00 0.00 0.00 0.00 0.00 0.45 Volume/Cap: 0.00 0.90 0.08 0.90 0.39 0.00 0.00 0.00 0.00 0.00 0.90

Tue Aug 5, 2003 13:29:18 Exis + Proj AM Peak Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #4 Highway 1/Rio Road Critical Vol./Cap. (X): 0.611 Cycle (sec): 60 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 45 Level Of Service: 22.1 ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:45-8:45 AM Peak Hour Base Vol: 41 111 69 335 130 104 177 279 37 106 284 115 Initial Bse: 41 111 69 335 130 104 177 279 37 106 284 115 Added Vol: 0 3 0 0 0 0 0 1 0 7 4 PasserByVol: 0 0 0 0 0 0 0 0 0 Saturation Flow Module: Adjustment: 0.95 1.00 0.85 0.95 0.93 0.93 0.95 0.98 0.98 0.95 1.00 0.85 Lanes: 1.00 1.00 1.00 2.00 0.56 0.44 1.00 1.77 0.23 1.00 1.00 1.00 Final Sat.: 1805 1900 1615 3610 985 788 1805 3296 436 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.03 0.08 0.06 0.10 0.14 0.14 0.12 0.11 0.11 0.08 0.18 0.09 Crit Moves: **** *** * * * * Green/Cycle: 0.05 0.13 0.13 0.17 0.25 0.25 0.20 0.30 0.30 0.21 0.30 0.30 Volume/Cap: 0.58 0.61 0.43 0.61 0.58 0.58 0.61 0.36 0.36 0.36 0.61 0.29 Uniform Del: 27.8 24.6 23.9 23.3 19.9 19.9 21.7 16.7 16.7 20.4 18.0 16.1 1.4 1.9 2.1 2.1 3.0 0.2 0.2 0.6 2.0 0.3 IncremntDel: 9.1 4.3

AdjDel/Veh: 36.9 28.9 25.4 25.1 22.0 22.0 24.8 16.9 16.9 21.0 20.0 16.5 DesignQueue: 2 5 3 10 4 3 6 9 1 4 9

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************* Intersection #4 Highway 1/Rio Road *********************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.766 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 59 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - RControl: Protected Protected Protected Protected Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 Lanes: 1 0 1 0 1 2 0 0 1 0 1 1 0 Volume Module: >> Count Date: 18 Dec 2002 << 3:45-4:45 PM Peak Hour Base Vol: 93 201 55 315 151 68 140 441 37 166 518 471 Initial Bse: 93 201 55 315 151 68 140 441 37 166 518 471 Added Vol: 0 9 0 0 0 0 0 4 0 5 2 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 52 0 471 Initial Fut: 93 210 43 178 542 491 Final Vol.: 103 233 61 346 166 75 163 517 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.12 0.04 0.10 0.13 0.13 0.09 0.15 0.15 0.10 0.29 0.30 Crit Moves: **** **** *** Green/Cycle: 0.09 0.16 0.16 0.13 0.20 0.20 0.12 0.31 0.31 0.20 0.40 0.40 Volume/Cap: 0.67 0.77 0.24 0.77 0.67 0.67 0.77 0.48 0.48 0.48 0.72 0.77 Uniform Del: 26.6 24.1 22.0 25.4 22.2 22.2 25.7 16.8 16.8 21.1 15.3 15.7 DesignQueue: 3 7 2 10 5 2 5 12 1 5 12

											 -	
		Ť.	evel Of	Serv	ice C	omputat	ion R	eport				
·n	റററ വ	CM OD	eration	s Metl	od (Future	Volum	e Alt	ernativ	re)		
رنگه مان طور مان مان مان مان مان مان مان در		CM OP	+++++	****	****	*****	****	****	****	****	***	****

*****	****	****	*****	****	****	****	****	****	****	****	* * * *	***
Cycle (sec):		60			C	ritica:	l Vol.	/Cap.	(X):	á	0.57	3
Loss Time (se	c) ·	12	(Y+R =	- 4 s	ec) A	verage	Delay	(sec	/veh):		15.	0
Ontinol Circle		42	.,		T.	evel 0	f Serv	ice:			3	В
Optimal Cycle	ing Salah dan basah				* * * *	*****	****	****	*****	****	***	****
									und	Wes	t Bo	und
Approach:		th Bo				und						
Movement:	Ъ -	\mathbf{T}	- R	Ъ-	Л.	- R	, ь -	1	- R			
Movement:							1					
Control:	Spl	it Ph	ase	Spl	it Ph	ase	Pr	oteci	.ea	PIO	LECL	eu
Rights:		Ovl			Inclu	.de		Inclu	ıde		nclu	
Min. Green:	0	0	0	0	0	0	0		.0	0	0	0
Lanes:		. 0	0 1	0 1	0	0 1	1 0	2	0 1	2 0	2	0 1
			1	l		1						
Volume Module		Count	Date	10 De	G 200	ו פו	.30-8·	30 AN	1 Peak	Hour		ŕ
				24	12	40	23	683	221	426	766	11
Base Vol:	108	7	273			1.00	1.00		1.00	1.00 1		1.00
	1.00		1.00	1.00				683	221	426	766	11
Initial Bse:	108	7	273	24	12	40	23			16	28	0
Added Vol:	0	0	.3	0	0	0	0	12	0			0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	108	7	276	24	12	40	23	695	221	442	794	11
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1		1.00
PHF Adj:	0.82	0.82	0.82	0.76	0.76	0.76	0.84	0.84	0.84	0.88 0	88.	0.88
PHF Volume:	132	9	3.37	32	16	53	27	827	263	502	902	13
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		9	337	32	16	5.3	27	827	263	502	902	13
PCE Adj:	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00 1	.00	1.00
_	1.00		1.00	1.00		1.00	1.00		1.00	1.00 1	.00	1.00
MLF Adj:				32	16	53		827	263		902	13
Final Vol.:	132	9	337			 						
							1			1		1
Saturation F	low Mo	odule							1000	1000 1	000	1000
Sat/Lane:	1900		1900	1900	1900	1900		1900				1900
Adjustment:	0.96	0.96	0.85	0.97	0.97	0.85		1.00				0.85
Lanes:	1.88	0.12	1.00	0.67	0.33	1.00		2.00				1.00
Final Sat.:	3408	221	1615		613	1615		3800				1615
		_:		1								
Capacity Ana												
Vol/Sat:	0 04	0 04	0.21	0.03	0.03	0.03	0.02	0.22	0.16	0.14 (0.24	0.01
Crit Moves:	0.01	0.01	****			****		****		****		
Green/Cycle:	0 10	0 10	0.36	0.06	0.06	0.06	0.04	0.38	0.38	0.24	0.58	0.58
				0.00	0.45	0.57		0.57		0.57	0.41	0.01
	0.32		0.57					14.8		20.0	6.8	5.2
Uniform Del:			15.4		27.4					0.9	0.1	0.0
IncremntDel:			1.4	3.1			4.0	0.6				1.00
Delay Adj:		1.00	1.00		1.00			1.00				
Delay/Veh:		24.5			30.5			15.3		20.9	6.9	5.2
User DelAdj:		1.00	1.00		1.00			1.00		1.00		1.00
AdjDel/Veh:		24.5	16.7	30.5	30.5			15.3		20.9	6.9	5.2
Decimanonene	4	0	7	1	0	.2	1			13	13	0
*******	****	****	*****	****	****	****	****	****	*****	****	***	*****

1.00

Tue Aug 5, 2003 13:30:01 Exis + Proj PM Peak wa a papa kataka a ababa a kataka a ababa a kataka a papaka a ababa kataka a maga a baba a ababa a kataka a ka Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************* Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard ***************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.806 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 23.0 Optimal Cycle: 69 Level Of Service: C ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____|___|___| Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 421 24 525 16 18 6 20 798 387 519 854 Initial Bse: 421 24 525 16 18 6 20 798 387 519 854 9 Saturation Flow Module: Adjustment: 0.96 0.96 0.85 0.98 0.98 0.85 0.95 1.00 0.85 0.95 1.00 0.85 Lanes: 1.89 0.11 1.00 0.47 0.53 1.00 1.00 2.00 1.00 2.00 2.00 1.00 Final Sat.: 3433 196 1615 874 983 1615 1805 3800 1615 3610 3800 1615 Capacity Analysis Module: Vol/Sat: 0.13 0.13 0.35 0.03 0.03 0.01 0.01 0.27 0.29 0.16 0.25 0.01 **** **** Crit Moves:

AdjDel/Veh: 24.5 24.5 24.2 85.0 85.0 34.3 40.2 21.6 28.1 33.3 10.3 DesignQueue: 14 1 13 1 1 0 1 27 13 19 19 ************************

والمراب والمواجع والمراجع والمراجع والأروان والأوان والمراجع والم Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ********************** Intersection #6 Carmel Valley Road/Rancho San Carlos Road *************************** Critical Vol./Cap. (X): Cycle (sec): 60 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 70 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 116 0 9 0 0 0 632 93 49 939 0.74 0.74 0.74 1.00 1.00 1.00 0.79 0.79 0.79 0.80 0.80 PHF Adj: PHF Volume: 157 0 12 0 0 0 819 118 61 1228 0 Final Vol.: 157 0 12 0 0 0 0 819 118 61 1228 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.09 0.00 0.01 0.00 0.00 0.00 0.00 0.43 0.07 0.03 0.65 0.00 *** Crit Moves: **** Green/Cycle: 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.69 0.69 0.05 0.75 0.00 Volume/Cap: 0.86 0.00 0.07 0.00 0.00 0.00 0.00 0.62 0.10 0.62 0.86 0.00 3.0 27.8 5.3 Uniform Del: 26.6 0.0 24.4 0.0 0.0 0.0 0.0 4.9 3.0 27.8 5.3 IncremntDel: 31.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.9 0.0 11.5 5.7 IncremntDel: 31.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 5.8 3.1 39.3 11.0 0.0 0.0 0.0 Delay/Veh: 58.5 0.0 24.6 User DelAdj: 1.00 1.00 AdjDel/Veh: 58.5 0.0 24.6 0.0 0.0 0.0 5.8 3.1 39.3 11.0 0.0

DesignQueue: 5 0 0 0 0 0 0 9 1 2 12

Exis + Proj PM Peak Tue Aug 5, 2003 13:30:01 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #6 Carmel Valley Road/Rancho San Carlos Road *************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.824 9 (Y+R = 4 sec) Average Delay (sec/veh): 10.6 62 Level Of Service: B Loss Time (sec): Optimal Cycle: ****************** South Bound East Bound West Bound L-T-R L-T-RApproach: North Bound L - T - R Movement: -----
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 18 Dec 2002 << 4:30-5:30 PM Peak Hour Final Vol.: 95 0 33 0 0 0 1196 141 33 610 0

Volume/Cap: 0.82 0.00 0.32 0.00 0.00 0.00 0.00 0.82 0.11 0.82 0.41 0.00

ApproachLOS:

______ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ****************** Intersection #7 Carmel Valley Road/Brookdale Drive ************************ Average Delay (sec/veh): 5.2 Worst Case Level Of Service: ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour PHF Volume: 14 0 10 19 0 43 20 841 4 4 1222 7 .0 0 0 0 0 0 0 0 0 0 Reduct Vol: Final Vol.: 14 0 10 19 0 43 20 841 4 4 1222 Critical Gap Module: Critical Gp: 7.1 xxxx 6.2 7.1 xxxx 6.2 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim: 3.5 xxxx 3.3 3.5 xxxx 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Level Of Service Module: LOS by Move: * * * * * * * B * * A * *
Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT F F

XXXXXX

XXXXXX

ApproachDel: 80.8
ApproachLOS: F

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #7 Carmel Valley Road/Brookdale Drive *************** Average Delay (sec/veh): 1.9 Worst Case Level Of Service: F ******************************* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Lanes: Volume Module: >> Count Date: 18 Dec 2002 << 4:45-5:45 PM Peak Hour 0 1150 7 3 586 0 50 0 0 0 0 21 Initial Bse: 5 0 4 0 0 0 0 12 0 0 0 0 4 12 0 Added Vol: 0 0
PasserByVol: 0 0
Initial Fut: 5 0 12 50 0 28 0 0 0 0 0 0 0 0 28 50 1150 7 3 586 21 PHF Volume: 9 0 7 12 0 28 54 1250 8 3 610 0 0 Reduct Vol: 0 0 Final Vol.: 9 0 0 0 0 -0 0 0 0 7 12 0 28 54 1250 8 3 610 22 Critical Gap Module: Critical Gp: 7.1 xxxx 6.2 7.1 xxxx 6.2 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim: 3.5 xxxx 3.3 3.5 xxxx 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: 621 632 xxxx xxxxx 1258 xxxx xxxxx Cnflict Vol: 2004 xxxx 1254 1994 xxxx 960 xxxx xxxxx 560 xxxx xxxxx Potent Cap.: 45 xxxx 212 46 xxxx Move Cap.: 40 xxxx 212 42 xxxx 491 491 960 xxxx xxxxx 560 xxxx xxxxx Move Cap.: Level Of Service Module: A * * B * * LOS by Move: * * * * * LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared LOS: * F * * F * * * * * *

51.2

F

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #7 Carmel Valley Road/Brookdale Drive Critical Vol./Cap. (X): 0.834 Cycle (sec): 80 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 78 Level Of Service: 12.7 Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Movement: Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 7 0 5 0 0 0 631 3 3 1002 Initial Bse: 7 0 5 0 0 0 631 3 3 1002 0 0 0 0 0 3 1002 90 0 19 0 43 15 0 0 .0 Added Vol: 4 4 1222 7 PHF Volume: 14 0 10 19 0 43 20 841 Saturation Flow Module: Adjustment: 0.92 1.00 0.92 0.89 1.00 0.89 0.95 1.00 1.00 0.95 1.00 1.00 Lanes: 0.58 0.00 0.42 0.31 0.00 0.69 1.00 0.99 0.01 1.00 0.99 0.01 Final Sat.: 1017 0 726 520 0 1176 1805 1889 9 1805 1887 11 Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.01 0.04 0.00 0.04 0.01 0.45 0.45 0.00 0.65 0.65 Crit Moves: **** **** AdjDel/Veh: 138.5 0.0 138.5 90.5 0.0 90.5 150.7 3.8 3.8 123.1 9.9 9.9 DesignQueue: 1 0 0 1 0 2 1 9 0 0 15

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #7 Carmel Valley Road/Brookdale Drive ***************************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.841 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 75 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 4:45-5:45 PM Peak Hour Base Vol: 5 0 4 0 0 0 01150 7 3 586 Initial Bse: 5 0 4 0 0 0 0 1150 7 3 586 0
Added Vol: 0 0 0 0 0 22
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 5 0 4 12 0 28 50 1150 7 3 586 21 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.01 0.02 0.00 0.02 0.03 0.66 0.66 0.00 0.33 0.33 *** **** Crit Moves: **** **** Delay/Veh: 165.9 0.0 165.9 107.6 0.0 107.6 34.4 9.2 9.2 371.0 4.2 4.2 AdjDel/Veh: 165.9 0.0 165.9 107.6 0.0 107.6 34.4 9.2 9.2 371.0 4.2 4.2 DesignQueue: 0 0 0 0 0 1 2 13 0 0 7 0

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

2000 HCM Unsignalized Method (Future Volume Alternative)												
Intersection #8 Carmel Valley Road/Dorris Drive												
Average Delay (sec/veh): 10.4 Worst Case Level Of Service: F												
Approach:							Ea			West Bound		
Movement:	T	Tr.	- R	L -	T	- R	L -	T	- R		T	
Control: Stop Sign				St	op Si	gn	Unc	ontro	lled	Uncontrolled		
Rights:	Include			Include			Include			Include		
Lanes:	1 0	0	0 1	0 0	0	0 0		1) 1	
				1				;		1		
Volume Module: >> Count Date: 18 Dec 2002 << 7:15-8:15 AM Peak Hour												
Base Vol:	98	0	3.0	0	0	0	0	416	139	56	686	0
Growth Adj: 1	00	1.00	1.00	1.00		1.00	1.00		1.00		1.00	1.00
Initial Bse:	98	0	30	0	0	0	.0	416	139	56	686	0
Added Vol:	1	0	0	0	0	.0	0	16	3	0	:5 :0	0
PasserByVol:	0	0	0	0	.0	.0	0	0	0	.0	691	.0
Initial Fut:	99	0	30	.0	0	0	0	432	142	56		1.00
User Adj: 1	.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00		
PHF Adj: 0	76	0.76	0.76	1.00		1.00	0.77	-	0.77		0.89	0.89
PHF Volume:	130	.0	39	0	0	0	0	561	184	63	776 0	0
Reduct Vol:	0	0	.0	0	.0	0	0	0	.0	0	-	0
Final Vol.:	130	0	39	0	0	.0	0	561	184	63	776	V
Critical Gap N										a H		******
Critical Gp:	6.4	XXXX							XXXXX			XXXXX
FollowUpTim:	3.5	XXXX	3.3	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX			XXXXX
								- 				}
Capacity Modul										745	25252525	ararararar
Cnflict Vol: 1			561			XXXXX			XXXXX			XXXXX
Potent Cap.:			531						XXXXX			XXXXX
Move Cap.:	135	XXXX	531			XXXXX			XXXXX			xxxxx
									- + -, {			1
Level Of Servi										0 =	37373737	xxxxx
Stopped Del:13						**	*	*	*	9.5 A	*	*
LOS by Move:		*	В	*	:*						- LTR	
Movement:		- LTR				- RT		- LTR				XXXXX
Shared Cap.: 2	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX	XXXX	XXXX	VVVVV	AXAAA		
Shrd StpDel:xx		**	*	**	*	*	*	*	*	*	*	*
Shared LOS:	*		*			•		xxxxx			XXXXX	
ApproachDel:		103.7			*****		:X:	*		, A.	*	
ApproachLOS:		F			•							

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

***************************** Intersection #8 Carmel Valley Road/Dorris Drive ***************** Average Delay (sec/veh): 7.6 Worst Case Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound
Movement: I - T - P I - T - P I - T - P L-T-R L-T-R L-T-R Movement: Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 Lanes: Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Base Vol: 105 0 47 0 0 0 0 610 257 61 436 0 610 257 61 436 0 0 0 0

PHF Volume: 122 0 53 0 0 0 0 729 305 71 528 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 729 305 71 528 0 Final Vol.: 122 0 53 0 0 Ω Critical Gap Module:

Capacity Module:

Level Of Service Module:

Stopped Del: 99.9 xxxx 14.6 xxxxx xxxx xxxxx xxxxx xxxxx 10.9 xxxx xxxxx LOS by Move: F * B * * * * B * * LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared LOS: * * * * * * * * * * * * XXXXXX

ApproachDel: 74.2 xxxxxx XXXXXX F ApproachLOS:

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #8 Carmel Valley Road/Dorris Drive **************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.566 9 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/Optimal Cycle: 36 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Volume Module: >> Count Date: 18 Dec 2002 << 7:15-8:15 AM Peak Hour PHF Adj: 0.76 0.76 0.76 1.00 1.00 1.00 0.77 0.77 0.77 0.89 0.89 PHF Volume: 130 0 39 0 0 0 0 561 184 63 776

Reduct Vol: 0 0 0 0 0 0 0 0 0 0

Reduced Vol: 130 0 39 0 0 0 0 561 184 63 776 63 776 0 0 0 0 561 184 63 776 0 Final Vol.: 130 0 39 ______ Saturation Flow Module: Final Sat.: 1805 0 1615 0 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.07 0.00 0.02 0.00 0.00 0.00 0.00 0.30 0.11 0.03 0.41 0.00 **** Crit Moves: **** Green/Cycle: 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.65 0.65 0.08 0.72 0.00 Volume/Cap: 0.57 0.00 0.19 0.00 0.00 0.00 0.00 0.46 0.18 0.46 0.57 0.00 Uniform Del: 24.6 0.0 23.4 0.0 0.0 0.0 0.0 5.3 4.2 26.5 3.9 0.0 IncremntDel: 3.3 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.3 0.1 2.4 0.6 0.0 IncremntDel: 3.3 0.0 0.5 0.0 0.0 0.0 0.0 0.3 0.1 2.4 0.6 0.0 Delay Adj: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 Delay/Veh: 27.9 0.0 23.9 0.0 0.0 0.0 0.0 5.6 4.3 28.9 4.5 0.0 AdjDel/Veh: 27.9 0.0 23.9 0.0 0.0 0.0 5.6 4.3 28.9 4.5 0.0 DesignQueue: 4 0 1 0 0 0 0 7 2 2 8 *************************

4.3 33.8 3.1 0.0

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) *************** Intersection #9 Carmel Valley Road/Laureles Grade ***************** Average Delay (sec/veh): 7.5 Worst Case Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 0 0 0 104 0 120 91 324 0 0 562 229 Initial Bse: 0 0 0 104 0 120 91 324 0 0 562 229 125 413 0 0 664 269 0 0 0 0 0 0 PHF Volume: 0 0 0 116 0 137 125 413
Reduct Vol: 0 0 0 0 0 0 0 0
Final Vol.: 0 0 0 116 0 137 125 413 0 0 664 269 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxxx xxxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1326 xxxx 664 933 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 173 xxxx 464 742 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxxx xxxxx 151 xxxx 464 742 xxxx xxxxx xxxx xxxx xxxxx Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx 81.1 xxxx 16.0 10.8 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * * F * C B * * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT xxxxxx * E ApproachLOS:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #9 Carmel Valley Road/Laureles Grade ****************** Average Delay (sec/veh): 8.4 Worst Case Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Include Include Include 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 Rights: Lanes: Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Base Vol: 0 0 0 125 0 105 159 342 0 0 328 130 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxxx xxxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx Capacity Module: 399 554 xxxx xxxxx xxxx xxxx xxxx Cnflict Vol: xxxx xxxx xxxxx 1167 xxxx Potent Cap : xxxx xxxx xxxx 216 xxxx 655 1027 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 186 xxxx 655 1027 xxxx xxxxx xxxx xxxx xxxx xxxx Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx 63.1 xxxx 11.8 9.3 xxxx xxxxx xxxx xxxx xxxxx LOS by Move: * * * F * B A * * * * * * * LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT Shared LOS: * * * * * * * * * * * * xxxxxx XXXXXX 38.4 XXXXXX ApproachDel: Ε ApproachLOS:

ت تارس تا باری یا بات کارٹ کے مرکز کرنے کا بازی کار Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #9 Carmel Valley Road/Laureles Grade ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.592 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 37 Level Of Service: 11.1******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Rights: Include Include Include Protected Include Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Lanes: 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour 0 0 562 229 Added Vol: 0 0 0 0 0 PasserByVol: 0 0 0 0 0 104 0 664 269 Final Vol.: 0 0 0 116 0 137 125 413 0 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.06 0.00 0.08 0.07 0.22 0.00 0.00 0.35 0.17 **** Crit Moves: Green/Cycle: 0.00 0.00 0.00 0.14 0.00 0.14 0.12 0.71 0.00 0.00 0.59 0.59 Volume/Cap: 0.00 0.00 0.00 0.45 0.00 0.59 0.59 0.31 0.00 0.00 0.59 0.28 Uniform Del: 0.0 0.0 0.0 23.5 0.0 24.1 25.1 3.3 0.0 0.0 7.7 IncremntDel: 0.0 0.0 0.0 1.2 0.0 4.1 4.4 0.1 0.0 0.0 0.9 DesignQueue: 0 0 0 3 0 4 4 4 0 0 10 ********************** Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #9 Carmel Valley Road/Laureles Grade **************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.460 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 31 Level Of Service: *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.07 0.00 0.08 0.10 0.21 0.00 0.00 0.21 0.10 Crit Moves: Crit Moves: AdjDel/Veh: 0.0 0.0 0.0 23.5 0.0 23.7 20.9 4.0 0.0 0.0 11.6 10.0 DesignQueue: 0 0 0 4 0 4 5 4 0 0 8 3 ************

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to TJKM, PLEASANTON, CA

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #10 Highway 68/Laureles Grade ****************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.853 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 20.4 Optimal Cycle: 72 Level Of Service: C Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R _____ Control: Split Phase Split Phase Protected Protected Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Volume Module: 0 606 137 242 1160 0 .0 0 Base Vol: 226 0 205 PHF Volume: 226 0 214 0 0 0 0 606 137 245 1160 0 PHF Volume: Vol: 0 0 0 0 0 0 0 0 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.32 0.08 0.14 0.61 0.00 **** Crit Moves: Green/Cycle: 0.16 0.00 0.16 0.00 0.00 0.00 0.00 0.50 0.50 0.21 0.72 0.00 Volume/Cap: 0.81 0.00 0.85 0.00 0.00 0.00 0.64 0.17 0.64 0.85 0.00 AdjDel/Veh: 44.1 0.0 52.2 0.0 0.0 0.0 0.0 14.1 9.6 28.5 12.7 0.0

DesignQueue: 8 0 7 0 0 0 0 13 3 8 15

2 1

10

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************************** Intersection #10 Highway 68/Laureles Grade ***************** 70 Critical Vol./Cap. (X): 0.873 Cycle (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 18.6
78 Level Of Service: B Loss Time (sec): Optimal Cycle: 78 Level Of Service: В ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 152 0 258 0 0 0 1101 140 21 717 0 Initial Bse: 152 0 258 0 0 0 0 1101 140 21 717 0 Added Vol: 0 0 6 0 0 0 0 0 0 0 11 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Saturation Flow Module: Adjustment: 0.95 1.00 0.85 1.00 1.00 1.00 1.00 0.85 0.95 1.00 1.00 Lanes: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 Final Sat.: 1805 0 1615 0 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.16 0.00 0.00 0.00 0.08 0.09 0.02 0.38 0.00 **** Crit Moves: *** Green/Cycle: 0.19 0.00 0.19 0.00 0.00 0.00 0.06 0.66 0.66 0.02 0.68 0.00 Volume/Cap: 0.45 0.00 0.87 0.00 0.00 0.00 0.00 0.87 0.13 0.87 0.55 0.00 Uniform Del: 25.2 0.0 27.6 0.0 0.0 0.0 0.0 0.0 9.4 4.3 34.2 5.6 0.0 IncremntDel: 1.0 0.0 23.2 0.0 0.0 0.0 0.0 7.0 0.1 98.6 0.5 0.0 Delay Adj: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 Delay/Veh: 26.2 0.0 50.8 0.0 0.0 0.0 0.0 16.4 4.4 132.8 6.1 0.0 AdjDel/Veh: 26.2 0.0 50.8 0.0 0.0 0.0 0.0 16.4 4.4 132.8 6.1

DesignOueue: 5 0 9 0 0 0 17

Appendix E – Level of Service Worksheets: Existing + Project + Approved + Pending

_____ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ********************** Intersection #1 Highway 1/Carpenter Street *********************** Critical Vol./Cap. (X): 0.877 Cycle (sec): 100 12 (Y+R = 4 sec) Average Delay (sec/veh): 23.6 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec)
Optimal Cycle: 100 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 0 0 1
 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 51 1424 18 21 1442 738 419 10 11 40 25 83 18 21 1442 738 419 10 11 40 25 83 Initial Bse: 51 1424 4 0 0 0 0 0 Added Vol: 6 111 0 0 72 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 Initial Fut: 57 1535 18 21 1514 738 419 10 15 40 25 42 26 PHF Volume: 67 1806 21 25 1802 879 493 12 18 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.95 0.91 0.91 0.97 0.97 0.85 Lanes: 1.00 1.98 0.02 1.00 2.00 1.00 2.00 0.40 0.60 1.23 0.77 1.00 Final Sat.: 1805 3748 44 1805 3800 1615 3610 692 1037 2268 1418 1615 _____| Capacity Analysis Module: Vol/Sat: 0.04 0.48 0.48 0.01 0.47 0.54 0.14 0.02 0.02 0.02 0.02 0.05 *** *** Crit Moves: ****

AdjDel/Veh: 110.7 13.5 13.5 111.4 15.3 24.7 55.8 36.4 36.4 45.6 45.6 99.5 DesignQueue: 4 41 0 1 43 21 24 1 1 2 1 5

TO THE REPORT OF THE PROPERTY Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #1 Highway 1/Carpenter Street ***************** Critical Vol./Cap. (X): 0.799 Cycle (sec): 70 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 73 Level Of Service: ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Prot+Permit
 Protected

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1
 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 51 1424 18 21 1442 738 419 10 11 40 25 Initial Bse: 51 1424 18 21 1442 738 419 10 11 40 25 0 0 72 0 0 0 0 0 0 0 0 0 4 .0 .0 'n 0 Added Vol: 6 111 0 -0 PasserByVol: 0 0 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.80 0.91 0.91 0.95 1.00 0.85 Lanes: 1.00 1.98 0.02 1.00 2.00 1.00 2.00 0.40 0.60 1.00 1.00 1.00 Final Sat.: 1805 3748 44 1805 3800 1615 3055 692 1037 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.04 0.48 0.48 0.01 0.47 0.54 0.16 0.02 0.02 0.02 0.01 0.05 Crit Moves: **** *** **** Green/Cycle: 0.04 0.60 0.60 0.02 0.57 0.74 0.30 0.09 0.09 0.12 0.05 0.07 Volume/Cap: 0.83 0.80 0.80 0.80 0.83 0.74 0.54 0.19 0.19 0.19 0.29 0.82 Uniform Del: 33.2 10.9 10.9 34.3 12.3 5.4 20.0 29.5 29.5 27.6 32.1 32.3 IncremntDel: 48.7 2.2 2.2 84.0 2.9 2.5 0.7 0.6 0.6 0.4 1.7 38.4 AdjDel/Veh: 81.8 13.1 13.1 118.3 15.1 7.9 20.7 30.1 30.1 28.0 33.8 70.7 DesignQueue: 3 32 0 1 34 10 17 0 1 1 1

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #1 Highway 1/Carpenter Street **************** Cycle (sec): 120 Critical Vol./Cap. (X): 0.987 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 32.1 Optimal Cycle: 180 Level Of Service: C Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - I L - T - R
 Control:
 Protected
 Protected
 Prot+Permit
 Protected

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 1
 0
 2
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 39 2158 32 30 1598 664 690 8 37 24 11 Initial Bse: 39 2158 32 30 1598 664 690 8 37 24 11 55 32 14 70 PHF Volume: 47 2375 33 34 2031 763 821 10 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.78 0.87 0.87 0.95 1.00 0.85 Lanes: 1.00 1.97 0.03 1.00 2.00 1.00 2.00 0.15 0.85 1.00 1.00 1.00 Final Sat.: 1805 3740 52 1805 3800 1615 2945 245 1411 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.03 0.64 0.64 0.02 0.53 0.47 0.28 0.04 0.04 0.02 0.01 0.04 Crit Moves: **** **** * * * * AdjDel/Veh: 131.7 42.1 42.1 214.6 22.2 3.2 27.1 43.2 43.2 52.8 61.6 167.3 DesignQueue: 3 70 1 2 60 9 45 1 3 2 1 4 ***************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

***************** Intersection #2 Highway 1/Ocean Avenue ******************************* Cycle (sec): 80 Critical Vol./Cap. (X): 0.846 27.1 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 81 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R______
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 153 1025 111 24 1241 190 250 50 107 113 51 Initial Bse: 153 1025 111 24 1241 190 250 50 107 113 51 4 Added Vol: 14 117 9 0 76 0 0 0 9
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 200 272 54 126 180 78 55 PHF Volume: 188 1283 135 25 1386 0 0 0 0 0 Reduct Vol: 0 .0 0 0 0 135 25 1386 200 272 54 126 180 78 55 Reduced Vol: 188 1283 Saturation Flow Module: Adjustment: 0.95 0.99 0.99 0.95 1.00 0.85 0.95 0.90 0.90 0.95 0.94 0.94 Lanes: 1.00 1.81 0.19 1.00 2.00 1.00 1.00 0.30 0.70 1.00 0.59 0.41 Final Sat.: 1805 3391 356 1805 3800 1615 1805 512 1188 1805 1045 737 Capacity Analysis Module: Vol/Sat: 0.10 0.38 0.38 0.01 0.36 0.12 0.15 0.11 0.11 0.10 0.08 0.08 *** Crit Moves: **** **** Green/Cycle: 0.12 0.53 0.53 0.02 0.43 0.43 0.18 0.18 0.18 0.12 0.12 0.12 Volume/Cap: 0.85 0.71 0.71 0.85 0.29 0.85 0.60 0.60 0.85 0.64 0.64 Uniform Del: 34.3 14.0 14.0 39.0 20.4 14.8 31.8 30.2 30.2 34.6 33.7 33.7 IncremntDel: 24.7 1.2 1.2 49.1 4.3 0.2 18.3 3.2 3.2 25.6 6.4 6.4 Delay/Veh: 59.1 15.1 15.1 88.1 24.7 15.0 50.2 33.5 33.5 60.1 40.0 40.0 AdjDel/Veh: 59.1 15.1 15.1 88.1 24.7 15.0 50.2 33.5 33.5 60.1 40.0 40.0 DesignQueue: 8 29 3 1 39 5 10 2 5 7 3 2

DesignQueue: 12 82 3 1 75 11 28 2 11 14 7 9 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #2 Highway 1/Ocean Avenue ****************** Critical Vol./Cap. (X): 0.786 Cycle (sec): 60 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 61 Level Of Service: ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 153 1025 111 24 1241 190 250 50 107 113 Initial Bse: 153 1025 111 24 1241 190 250 50 107 113 51 135 25 1386 200 272 54 126 180 78 55 PHF Volume: 188 1283 n 0 0 0 Reduct Vol: Reduced Vol: 188 1283 135 25 1386 200 272 54 126 180 78 55 Final Vol.: 188 1283 135 25 1386 200 272 54 126 180 78 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.25 0.25 0.01 0.36 0.12 0.09 0.09 0.08 0.07 0.07 0.03 Crit Moves: **** **** **** Green/Cycle: 0.13 0.57 0.57 0.03 0.46 0.46 0.11 0.11 0.11 0.09 0.09 0.09 Volume/Cap: 0.79 0.45 0.45 0.45 0.79 0.27 0.79 0.79 0.69 0.79 0.79 0.38 Uniform Del: 25.2 7.6 7.6 28.5 13.6 9.8 25.9 25.9 25.6 26.7 26.7 25.7 IncremntDel: 15.7 0.1 0.1 5.5 2.4 0.2 9.6 9.6 10.3 11.8 11.8

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #2 Highway 1/Ocean Avenue ******************* Critical Vol./Cap. (X): 0.914 Cycle (sec): 100 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 33.5 Optimal Cycle: 116 Level Of Service: C ******************************** South Bound East Bound West Bound L - T - R L - T - RApproach: North Bound L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour 239 111 153 Final Vol.: 203 2100 79 14 1670 266 532 36 217 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.38 0.38 0.01 0.44 0.16 0.16 0.16 0.13 0.10 0.10 0.09 **** *** Crit Moves: **** Green/Cycle: 0.12 0.59 0.59 0.01 0.48 0.48 0.17 0.17 0.17 0.10 0.10 0.10 Volume/Cap: 0.91 0.65 0.65 0.65 0.91 0.34 0.91 0.91 0.78 0.91 0.91 0.91 AdjDel/Veh: 80.8 13.9 13.9 102.2 31.6 16.4 58.7 58.7 53.1 70.1 70.1 87.7 10 12 6 8 DesignQueue: 10 53 2 1 54 8 26 2

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *********************** Intersection #3 Highway 1/Carmel Valley Road *********************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.647 Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 10.9Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec Optimal Cycle: 34 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

 Lanes:
 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0
 ______ Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 0 361 44 894 554 0 0 0 0 0 906 Initial Bse: 0 361 44 894 554 0 0 0 0 0 906 0 0 0 0 0 0 0 0 0 1045 Saturation Flow Module: Adjustment: 1.00 1.00 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.85 Final Sat.: 0 1900 1615 3610 1900 0 0 0 0 0 3230 Capacity Analysis Module: Vol/Sat: 0.00 0.22 0.04 0.29 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.36 Crit Moves: **** **** Green/Cycle: 0.00 0.34 0.34 0.45 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.56 Volume/Cap: 0.00 0.65 0.12 0.65 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.65 Uniform Del: 0.0 16.8 13.7 12.7 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 IncremntDel: 0.0 2.3 0.1 0.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

AdjDel/Veh: 0.0 19.1 13.8 13.7 2.1 0.0 0.0 0.0 0.0 0.0 0.0 9.9 DesignQueue: 0 10 2 21 5 0 0 0 0 0 0 19

0 0 42

0

Crit Moves: ****

Ex+Prj+Pnd+Appr PM Peak Tue Aug 5, 2003 14:55:09 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************** Intersection #3 Highway 1/Carmel Valley Road ****************** Cycle (sec): 90 Critical Vol./Cap. (X): 0.944 Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 122 Level Of Service: C ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 Lanes:
 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 0 657 41 1151 589 0 0 0 0 0 1266 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.44 0.07 0.42 0.35 0.00 0.00 0.00 0.00 0.00 0.44

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to TJKM, PLEASANTON, CA

Green/Cycle: 0.00 0.46 0.46 0.44 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.47 Volume/Cap: 0.00 0.94 0.14 0.94 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.94 Uniform Del: 0.0 23.0 13.8 24.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 22.8

IncremntDel: 0.0 18.3 0.1 11.8 0.1 0.0 0.0 0.0 0.0 0.0 12.3

AdjDel/Veh: 0.0 41.3 13.9 35.8 0.7 0.0 0.0 0.0 0.0 0.0 35.1

DesignQueue: 0 25 3 47 3 0 0 0

Ex+Prj+Pnd+Appr AM Peak Tue Aug 5, 2003 14:51:38

EXPENDENCE IN FORK 140 140 140 57 200 200 200 200 200 200 200 200 200 20												
Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												
Intersection #4 Highway 1/Rio Road												
Intersection #4 highway 1/kio koad ***********************************												
Cycle (sec):		60			C	ritical	Vol	/Cap	(X):		0.64	4
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 22.9												
Opening Conding 47 Level Of Service:												
Optimal Cycle: 47 ************************************												
Approach:	Nor	th Bo	und	Sou	th Bo	und	Ea	st Bo	und	We	st Bc	und
Movement.	ī	т	– R	L -	Т	- R	L -	T	- R	L -	Т	
Control:	Pr	otect	ed	Pr	otect	ed	Pr	otect	ed	Pr	otect	ed
Rights:		Inclu	de		Inclu	.de		Inclu	de			ıde
Min. Green:	0	.0	O	0	0	0			0		0	0
Lanes.	1 :0	า ๆ	0 1	2 0	0	1 0	1 0	1	1 0	1 0	1	
Volume Module	: >>	Count	Date:	18 De	c 200	2 << 7	:45-8:	45 AM	Peak	Hour		
Base Vol:	41	111	69	335	130	104	177	279	37	106	284	115
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		111	69	335	130	104	177	279	3.7	106	284	115
	0	16	25	0	1	0	0	24	0	45	31	0
PasserByVol:	0	0	0	Ó	0	.0	0	0	0	0	0	0
Initial Fut:	41	127	94	335	131	104	177	303	3.7	151	315	115
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.74		0.74	0.92	0.92	0.92	0.79	0.79	0.79	0.83		0.83
PHF Volume:	55	172	127	364	142	113	224	384	47	182	380	139
Reduct Vol:	0	0	0	0	0	.0	0	0	.0	0	0	0
Reduced Vol:	5 5	172	127	364	142	113	224	384	47	182	380	139
	1.00	1.00	1.00	1.00		1.00		1.00		1.00		1.00
MLF Adj:	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00
Final Vol.:	55	172	127	364	142	113	224		47		380	139
Tindi voi							1			1		
Saturation F	Low Mo	odule:							1000	1000	1000	1900
Sat/Lane:		1900	1900	1900		1900		1900	1900		1900	
Adjustment:			0.85	0.95		0.93		0.98			1.00	
Lanes:		1.00	1.00	2.00		0.44		1.78	0.22 407		1900	
Final Sat.:	1805	1900	1615	3610	989	785	T-8/05	3332		1	1900	
							1			1.		ı
Capacity Ana				0 10	0 14	0.14	0 10	n 19	n 19	0 10	0.20	0.09
Vol/Sat:		0.09	0.08	****	0.14	0.14	****	0.12	0.12	0.10	****	
Crit Moves:			0 14		0.24	0.24		0.27	0.27	0.23	0.31	0.31
Green/Cycle:			0.14		0.59	0.59		0.43	0.43		0.64	0.28
Volume/Cap:		0.64	0.56		20.0	20.0		18.2	18.2		17.8	15.6
Uniform Del:			24.1 3.2	23.7	20.0	20.0	4.1		0.3	0.7		
IncremntDel:	9.4				1.00	1.00		1.00	1.00		1.00	1.00
Delay Adj:		1.00	1.00 27.2		22.1	22.1		18.5	18.5		20.3	
Delay/Veh:		29.7	1.00		1.00	1.00		1.00	1.00		1.00	1.00
User DelAdj:			27.2		22.1	22.1		18.5	18.5		20.3	
AdjDel/Veh:	37.2	29.7 5	4	20.3		3	6	10	1	5	9	
DesignQueue:	∠ ****	C.	******	****	****	*****	****	****				

Ex+Prj+Pnd+Appr PM Peak Tue Aug 5, 2003 14:55:09

									,		-,	
		$_{\rm L}$	evel Of	Serv	ice C	omputat	ion Re	eport				
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
*****	****	****	*****	****	****	*****	****	* * * * * *	****	****	****	****
Intercogtion #	a Hic	Thwav	1/Pio	Road								
********	***	* * * * *	*****	****	* * * * *	*****	****	* * * * * 1	*****	****	****	****
Cycle (sec):		60			C	ritical	. Vol.,	/Cap.	(X):		0.79	4
Loss Time (sec) :	12	(Y+R =	. 4 s	ec) A	verage	Delay	(sec,	/veh):		26.	3
Ontimal Cucle:		63			I	evel Of	Serv	ice:				C
**********	***	****	*****	****	* * * * *	*****	****	****	*****	****	****	****
Approach:		th Bo			th Bo			st Bo		We	st Bo	und
·		T			T		L -	т	- R	L -	T	- R
'1					otect			otect		Pr	otect	ed
Control:		otect			Inclu			Inclu			Inclu	
Rights:		Inclu				0	10	0	0	0	0	0
Min. Green:	0	0	0	0			1 0			1 0	_	0 1
			0 1		0							
						·] ,						ı,
Volume Module:)2 << 3	:45-4:	45 PM	reak i	166	518	471
Base Vol:	93	201	55	315	151	68	140	441	37	1.00		1.00
	00	1.00	1.00	1.00		1.00	1.00		1.00			471
Initial Bse:	93	201	55	315	151	68		441	37	166	518	0
Added Vol:	0	44	39	0	1	0	0	52	.0	65	40	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	93	245	94	315	152	68	140	493	37	231	558	471
User Adj: 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
	.90	0.90	0.90	0.91	0.91	0.91	0.86	0.86	0.86	0.96		0.96
PHF Volume:	103	272	104	346	167	75	163	573	43	241	581	491
Reduct Vol:	0	0	Ö	0	-0	0	0	0	0	0	0	0
	103	272	104	346	167	75	163	573	43	241	581	491
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
-		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol :	103	272	104	346	167	75	163	573	43	241	581	491
Saturation Flo			•	1			•		•			
		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
		1.00	0.85		0.95		0.95	0.99	0.99	0.95	1.00	0.85
		1.00	1.00		0.69			1.86	0.14	1.00	1.00	1.00
		1900	1615		1252			3499	263	1805	1900	1615
Final Sac.:							1		[
				3		ı	. 1			1 :1		
Capacity Analy		0.14	0.06	0.10	0.13	0.13	0 09	0.16	0.16	0.13	0.31	0.30
101/04-1	0.06	V.14	0.06	****	0.13	0.23	****	0.10	0 1,2.0		***	
Crit Moves:			0 10		0 01	0.21		0.28	0.28	0.22	0.39	0.39
Green/Cycle: (0.18		0.21			0.60	0.60		0.79	
		0.79	0.36		0.63				18.9		16.3	
Uniform Del: 2			21.5		21.6			18.9		2.4		
IncremntDel:		12.0	0.8	9.7			18.9				1.00	
		1.00	1.00		1.00			1.00			22.3	
		35.6	22.3		25.0			19.8			1.00	
User DelAdj: :			1.00		1.00			1.00			22.3	
AdjDel/Veh: :	34.2	35.6	22.3		25.0			19.8		23.3		
DesignQueue:	3	8	3	10	5	5 2		14	1			
**********	* * * *	****	*****	****	****	****	****	*****	*****	n n .n .n .n .n .n		

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.628 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 46 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 108 7 273 24 12 40 23 683 221 426 766 11 273 24 12 Initial Bse: 108 7 Added Vol: 16 0 38
PasserByVol: 0 0 0
Initial Fut: 124 7 311 0 66 37 123 123 0 0 0 0 0 37 123 123 0 0 0 0 0 40 23 749 258 549 889 24 12 11 0.82 0.82 0.82 0.76 0.76 0.76 0.84 0.84 0.84 0.88 0.88 0.88 PHF Adj: PHF Volume: 151 9 379 32 16 53 27 892 307 624 1010 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.04 0.23 0.03 0.03 0.03 0.02 0.23 0.19 0.17 0.27 0.01 Crit Moves: **** **** Green/Cycle: 0.10 0.10 0.37 0.05 0.05 0.05 0.04 0.37 0.37 0.28 0.61 0.61 Volume/Cap: 0.45 0.45 0.63 0.50 0.50 0.63 0.43 0.63 0.51 0.63 0.43 0.01 Uniform Del: 25.5 25.5 15.4 27.7 27.7 27.9 28.4 15.4 14.5 19.0 6.1 4.5 IncremntDel: 0.9 0.9 2.1 4.0 4.0 14.1 4.7 0.9 0.7 1.3 0.1 0.0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************ Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard *********************************** Critical Vol./Cap. (X): 0.923 Cycle (sec): 80 12 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): Optimal Cycle: 106 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - P ******************* L - T - R L - T - R L - T - R Control: Split Phase Split Phase Protected Protected Rights: Ovl Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Rights: Ovl Min. Green: 0 0 2 0 2 0 1 Lanes: 1 1 0 0 1 0 1 0 0 1 1 0 2 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 2:15-3:15 PM Peak Hour Base Vol: 421 24 525 16 18 6 20 798 387 519 854 0.95 0.95 0.95 0.67 0.67 0.67 0.82 0.82 0.82 0.91 0.91 0.91 PHF Adi: PHF Volume: 502 25 679 24 27 9 24 1211 544 708 1042 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.15 0.15 0.42 0.03 0.03 0.01 0.01 0.32 0.34 0.20 0.27 0.01 Crit Moves: *** **** Green/Cycle: 0.24 0.24 0.46 0.03 0.03 0.03 0.03 0.36 0.36 0.21 0.55 0.55 Volume/Cap: 0.60 0.60 0.92 0.92 0.92 0.19 0.50 0.87 0.92 0.92 0.50 0.01 AdjDel/Veh: 27.9 27.9 37.6 131.9 132 39.8 46.1 30.1 44.6 47.5 11.3 8.1 DesignQueue: 18 1 18 1 1 0 1 37 17 26 22 *******************

. Na englight agus agus agas an air air an ear air à e e e è e e circle e e e e e e e element de la circle à e la Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #6 Carmel Valley Road/Rancho San Carlos Road ******************* Critical Vol./Cap. (X): 0.935 Cycle (sec): 120 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 138 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R South Bound East Bound West Bound Control: Split Phase Split Phase Protected Protected Rights: Include I Lanes: 1 0 0 0 1 0 0 0 0 0 1 0 1 Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Base Vol: 116 0 9 0 0 0 0 632 93 49 939 0 Initial Bse: 116 0 9 0 0 0 0 632 93 49 939 0 Added Vol: 124 0 53 0 0 0 0 56 42 18 103 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1011al Fut: 240 0 62 0 0 0 0 688 135 67 1042 0 0.74 0.74 0.74 1.00 1.00 1.00 0.79 0.79 0.79 0.80 0.80 PHF Adj: PHF Volume: 324 0 84 0 0 0 0 871 171 84 1303 Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.18 0.00 0.05 0.00 0.00 0.00 0.00 0.46 0.11 0.05 0.69 0.00 Crit Moves: **** **** Green/Cycle: 0.19 0.00 0.19 0.00 0.00 0.00 0.00 0.67 0.67 0.07 0.73 0.00 7.6 70.1 25.5 0.0 AdjDel/Veh: 79.8 0.0 41.8 0.0 0.0 0.0 0.0 14.0 7.6 70.1 25.5 0.0 DesignQueue: 18 0 5 0 0 0 0 22 4 5 28 0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #6 Carmel Valley Road/Rancho San Carlos Road ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.984 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 26.9
Optimal Cycle: 114 Level Of Service: C ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 4:30-5:30 PM Peak Hour Base Vol: 89 0 31 0 0 0 0 1122 138 31 539 Initial Bse: 89 0 31 0 0 0 0 1122 138 31 539 0 143 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.00 0.04 0.00 0.00 0.00 0.68 0.18 0.05 0.38 0.00 * * * * *** Crit Moves: **** Green/Cycle: 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.69 0.69 0.06 0.75 0.00 Volume/Cap: 0.98 0.00 0.42 0.00 0.00 0.00 0.00 0.98 0.26 0.98 0.50 0.00 Uniform Del: 26.9 0.0 25.3 0.0 0.0 0.0 0.0 8.9 3.4 28.3 3.0 0.0 1.8 0.0 0.0 0.0 0.0 21.0 0.1 84.4 0.3 IncremntDel: 61.7 0.0 AdjDel/Veh: 88.6 0.0 27.1 0.0 0.0 0.0 29.9 3.6 112.7 3.3 3 3 7 DesignQueue: 6 0 2 0 0 0 16 Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)													

Intersection #7 Carmel Valley Road/Brookdale Drive													
Awaraga Dalay (gog/yeh). 8 8 Worst Case Level Of Service: F													

Approach:	Nor	th Bo	und	Sou	th Bo	und	Ea	st Bo	und	West Bound L - T - R			
Movement:	L -	1 T	- R	L -	T	- R	L :-	T	- R	+ نا −	T	- <u>R</u>	
Movement:										TT		1104	
Control:	St	op Si	gn	St	op Si	gn	unc	ontro	Tied	Offic	Inclu	ge TTCO	
Rights:			de		Inclu	de		Inclu	ae ^ ^				
Lanes:	0 0	1!	0 0	0 0	14	0 0	. 0 0	11	:O U		Т.		
Lanes:							}		 Dl-	1			
Volume Module				18 De	c 200	2 << 7	:30-8:	30 AM	Peak 3	HOUL	1002	0	
Base Vol:	7	0	5	0	0	0		631	1,0	1.00		1.00	
Growth Adj:	1.00		1.00	1.00		1.00		1.00			1002	0	
Initial Bse:	7	0	5	0	0	0	.0	631	3		77	6	
Added Vol:	0	0	0	19	0	43	15	9.5	.0	0		10	
PasserByVol:	0	0	0	0	0	0	0	0	0		0	_	
Initial Fut:	7	0	5	19	0	43	15		3		1079	6	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00		1.00	
PHF Adj:	0.50	0.50	0.50	1.00	1.00	1.00		0.75	0.75	0.82		0.82	
PHF Volume:	14	0	10	19	0	43	20	968	4		1316	7	
Reduct Vol:	0	0	0	0	0	0	.0	0	0	0	0	0	
Final Vol.:	14	0	10	19	0	4.3	20	968	4	4	1316	7	
Critical Gap		le:											
Critical Gp:	7.1	xxxx			xxxx	6.2						XXXXX	
en a non a contraction de la c	2 15	3.5353535	່າ	3.5	XXXX	3.3	2.2	XXXX	XXXXX			XXXXX	
FOLTOMODITM:													
Capacity Mod													
Cnflict Vol:	2358	XXXX	970	2342	XXXX	1320	1323	XXXX	XXXXX	972		XXXXX	
Potent Cap.:				26	XXXX	194	529	XXXX	XXXXX	717		XXXXX	
			210	· O. ∕I	TO THE TANK	104	529	XXXX	XXXXX	7.1.7	XXXX	XXXXX	
Move Cap.:					- -					1			
Level Of Ser	vice :	Modul	≘:										
Stopped Del:	XXXXX	XXXX	xxxxx	XXXXX	XXXX	XXXXX			XXXXX			*****	
LOS by Move:	*	*	*	*	*	*	В	*		В	*		
Movement:	LT	- LTR	- RT	LT	- LTR	- RT	LT	- LTR	- RT	LT	- LTR	- K1	
Shared Cap.:	XXXX	31	XXXXX	XXXX	61	XXXXX	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX	
Shrd StpDel:	XXXXX	278	XXXXX	XXXXX	229	XXXXX	XXXXX					*	
Shared LOS:			*	*	F	*		*		*		· *	
ApproachDel:					229.4		×	XXXXX		×	XXXXX *		
ApproachLOS:		F			F			*			.*		
- v -													

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #7 Carmel Valley Road/Brookdale Drive ******************************** Average Delay (sec/veh): 3.1 Worst Case Level Of Service: F **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Rights: Include Includ Volume Module: >> Count Date: 18 Dec 2002 << 4:45-5:45 PM Peak Hour Base Vol: 5 0 4 0 0 0 01150 7 3 586 Initial Bse: 5 0 4 0 0 0 0 1150 7 3 586 Added Vol: 0 0 0 12 0 28 50 133 0 0 157 0 0 157 0 0 0 7 3 743 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 1nitial Fut: 5 0 4 12 0 28 50 1283 0 0 21 PHF Volume: 9 0 7 12 0 28 54 1395 Reduct Vol: 0 0 0 0 0 0 0 0 Final Vol.: 9 0 7 12 0 28 54 1395 8 3 774 22 0 0 0 0 0 28 8 3 774 Final Vol.: 9 0 54 1395 Critical Gap Module: Critical Gp: 7.1 xxxx 6.2 7.1 xxxx 6.2 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim: 3.5 xxxx 3.3 3.5 xxxx 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Cnflict Vol: 2312 xxxx 1398 2302 xxxx 785 796 xxxx xxxxx 1402 xxxx xxxxx Potent Cap.: 27 xxxx 174 28 xxxx 396 835 xxxx xxxxx 493 xxxx xxxxx Move Cap.: 24 xxxx 174 25 xxxx 396 835 xxxx xxxxx 493 xxxx xxxxx Level Of Service Module: LOS by Move: * * * * * * * A * * B * *
Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT ApproachLOS: 153.8

F

F

ApproachLOS:

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************************** Intersection #7 Carmel Valley Road/Brookdale Drive *************** Cycle (sec): 90 Critical Vol./Cap. (X): 0.875 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 14.6 Optimal Cycle: 94 Level Of Service: B ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Volume Module: >> Count Date: 18 Dec 2002 << 7:30-8:30 AM Peak Hour Saturation Flow Module: Final Sat.: 1017 0 726 520 0 1176 1805 1890 8 1805 1888 Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.01 0.04 0.00 0.04 0.01 0.51 0.51 0.00 0.70 **** **** Crit Moves: **** Green/Cycle: 0.02 0.00 0.02 0.04 0.00 0.04 0.01 0.81 0.81 0.00 0.80 0.80 Volume/Cap: 0.88 0.00 0.88 0.88 0.00 0.88 0.88 0.64 0.64 0.64 0.88 0.88 Uniform Del: 44.2 0.0 44.2 42.9 0.0 42.9 44.4 3.5 3.5 44.8 6.2 6.2 Delay/Veh: 162.7 0.0 162.7 108.6 0.0 108.6 176.3 4.4 4.4 176.7 12.2 12.2 AdjDel/Veh: 162.7 0.0 162.7 108.6 0.0 108.6 176.3 4.4 4.4 176.7 12.2 12.2 DesignQueue: 1 0 0 1 0 2 1 11 0 0 16 0 ******************

و کام کرتے ہے جاتا ہے کہ جاتا ہے کہ جاتا ہے کہ اور کام کرتے ہے کہ اور کام کرتے ہے کہ اور کام کرتے ہے کہ اور کر اور کام کرتے ہے کہ اور کام کام کام کرتے ہے کہ اور کام کام کام کرتے ہے کہ اور کام کام کام کرتے ہے کہ اور کام کرتے ہے کہ کام کرتے ہے کہ اور کام کرتے ہے کہ کام کرتے ہے کہ کام کرتے ہے کہ کام کرتے ہے کہ کرتے ہے کہ کام کرتے ہے کہ کرتے ہے کہ کام کرتے ہے کہ کام کرتے ہ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************************** Intersection #7 Carmel Valley Road/Brookdale Drive **************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.879 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 101 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: >> Count Date: 18 Dec 2002 << 4:45-5:45 PM Peak Hour Final Vol.: 9 0 7 12 0 28 54 1395 8 3 774 22 Saturation Flow Module: Final Sat.: 965 0 772 509 0 1187 1805 1888 10 1805 1840 52 Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.01 0.02 0.00 0.02 0.03 0.74 0.74 0.00 0.42 0.42 Crit Moves: **** *** **** Green/Cycle: 0.01 0.00 0.01 0.03 0.00 0.03 0.06 0.84 0.84 0.00 0.79 0.79 Volume/Cap: 0.88 0.00 0.88 0.88 0.00 0.88 0.53 0.88 0.88 0.88 0.53 0.53 DesignQueue: 0 0 0 1 0 2 3 15 0 0 10 0 *****************************

. Busing a few to the triangle of the angle of the few and the few Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ************************* Intersection #8 Carmel Valley Road/Dorris Drive ******************* Average Delay (sec/veh): 22.5 Worst Case Level Of Service: F ****************** Approach: North Bound South Bound East Bound West Bound Movement: Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:15-8:15 AM Peak Hour Base Vol: 98 0 30 0 0 0 416 139 56 686 Initial Bse: 98 0 30 0 0 0 0 416 139 56 686
Added Vol: 13 0 1 0 0 0 0 93 21 1 64
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 111 0 31 0 0 0 509 160 57 750 139 56 686 0 0 PHF Volume: 146 0 41 0 0 0 0 661 208 64 843 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 :0 0 64 843 Final Vol.: 146 0 41 0 661 208 0 0 0 0 Critical Gap Module: FollowUpTim: 3.5 xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx Capacity Module: 869 XXXX XXXXX Level Of Service Module: A * * LOS by Move: F * B * * * * * Movement: LT - LTR - RT

Shared LOS: * * * * * * * * * * *

ApproachDel: 232.6 xxxxxx

F

ApproachLOS:

xxxxxx

XXXXXX

XXXXXX

* 288.9

F

ApproachDel:

ApproachLOS:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ****************** Intersection #8 Carmel Valley Road/Dorris Drive *************** Average Delay (sec/veh): 28.5 Worst Case Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Rights: 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 Lanes: Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Base Vol: 105 0 47 0 0 0 610 257 61 436 Initial Bse: 105 0 47 0 0 0 0 610 257 61 436 Added Vol: 31 0 2 0 0 0 0 114 22 2 147 PasserByVol: 0 0 0 0 0 0 0 0 0 PHF Adj: 0.89 0.89 0.89 1.00 1.00 1.00 0.85 0.85 0.86 0.86 0.86 PHF Volume: 153 0 55 0 0 0 0 852 328 73 678 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Final Vol.: 153 0 0 0 55 0 73 678 0 852 328 Critical Gap Module: Capacity Module: Level Of Service Module: LOS by Move: F * C * * * * * в * * LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT Shared LOS: * * * * * * * * * * * *

XXXXXX

XXXXXX

Saturation Flow Module:

The phase of the section of the property of the phase of the property of the property of the phase of the pha Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #8 Carmel Valley Road/Dorris Drive ***************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.617 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 39 Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 0 Volume Module: >> Count Date: 18 Dec 2002 << 7:15-8:15 AM Peak Hour Base Vol: 98 0 30 0 0 0 416 139 56 686 56 686 0 Initial Bse: 98 0 30 0 0 0 416 139 PHF Volume: 146 0 41 0 0 0 0 661 208 64 843 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 146 0 41 0 0 0 0 661 208 64 843 0

Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.03 0.00 0.00 0.00 0.03 0.13 0.04 0.44 0.00 Crit Moves: **** Green/Cycle: 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.65 0.65 0.07 0.72 0.00 Volume/Cap: 0.62 0.00 0.19 0.00 0.00 0.00 0.53 0.20 0.53 0.62 0.00 Uniform Del: 24.6 0.0 23.2 0.0 0.0 0.0 0.0 5.6 4.2 27.1 4.3 0.0 IncremntDel: 4.9 0.0 0.4 0.0 0.0 0.0 0.0 0.5 0.1 4.6 0.9 AdjDel/Veh: 29.5 0.0 23.7 0.0 0.0 0.0 0.0 6.0 4.3 31.7 5.1 0.0 DesignQueue: 4 0 1 0 0 0 0 8 2 2 9 0 ******

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #8 Carmel Valley Road/Dorris Drive ************************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.675 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 9.4 Optimal Cycle: 44 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.03 0.00 0.00 0.00 0.00 0.45 0.20 0.04 0.36 0.00 **** **** Crit Moves: **** Green/Cycle: 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.66 0.66 0.06 0.72 0.00 AdjDel/Veh: 32.9 0.0 24.5 0.0 0.0 0.0 0.0 7.6 4.4 43.2 3.8 0.0 DesignQueue: 5 0 2 0 0 0 0 11 4 2 7 0

	ے در بر بر پ		Comi		moutat	ion Pe	enort						
Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)													
2000 ***********	*****	*****	****	****	****	****	****	****	****	****	****		
- 4 40	Commol	775]] 637	Poad/I	aurel	es Gra	ide.							
Intersection #9 Carmel Valley Road/Laureles Grade													
	Average Delay (sec/veh): 16.9 Worst Case Level Of Service: F												
*****	*****	****				****	****	****	****	****	***		
Approach:	North Bo	und		th Bou				und		st Bo T			
Movement: L	- T	- R	T -	Т -	- (R	.L	T	- R					
Movement:					1	IIn a			Unc	ontro	lled		
Control:	Stop Si	.gn	Sto	op Sig	gn	UIIC	Inclu	ge Tien		Inclu			
Rights:	Incl	ıae		TILCIU	1e 0 1		111C1u	~	0 0		0 1		
Lanes: 0	0 0	0 0	T :0	· · ·		1							
Volume Module:	Count	Date	18 De	c 200	2 << 7	ı :30-8:	30 AM	Peak	Hour		,		
	o 0	. Date:	104	0	120	91	324	0	0	562	229		
Base Vol: Growth Adj: 1.		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Initial Bse:	0 0	0	104	0	120	91	324	0	0	562	229		
Added Vol:	0 0	0	6	0	46	66	29	0	0	19	5		
PasserByVol:	0 0	.0	0	0	0	.0	0	0	0	0	0		
Initial Fut:	0 0	0	110	0	166	157	353	0	0	581	234		
	00 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00		
PHF Adj: 1.	00 1.00	1.00	0.90		0.90	0.80		0.80	0.85	684	0.85 275		
PHF Volume:	0 0	0	122	0	184	196	441	0	0	0 0	·2 // D		
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	684	275		
Final Vol.:	0 0	0	122	0	184	196	441	.0	10	004	.2.75		
Critical Gap Mc			~ 4		6.2	a n	between the	xxxxx	xxxxx	xxxx	xxxxx		
Critical Gp:xxx	XX XXX	XXXXX	6.4		3.3			XXXXX					
FollowUpTim:xxx	XX XXXX	XXXXX	1	XXXX									
			1		;	4		-!	1 31		•		
Capacity Module Cnflict Vol: xx		XXXXX	1517	xxxx	684	959	XXXX	xxxxx	XXXX	xxxx	XXXXX		
Potent Cap : xx				xxxx	452	726	xxxx	xxxxx	XXXX	xxxx	XXXXX		
	XX XXXX			XXXX	452	726	xxxx	XXXXX			XXXXX		
Level Of Service	e Modul	e:											
Stopped Del:xx	XX XXX	xxxxx	215.8	xxxx	18.3			XXXXX		**	**		
LOS by Move:		*	F	*	С	В	*	*	*				
Movement: 1	JT - LTF			- LTR				- RT			- RT xxxxx		
Shared Cap.: x	(XX XXX	XXXXX	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX					
Shared Cap.: X	CXX XXX	XXXXX	XXXXX	XXXX	*	****	XXXX	*	*	*	*		
Shared LOS:	* *	*	**	*	· *	•	XXXXX			XXXXX			
ApproachDel:		ζ.		97.0 F		,20	*			*			
ApproachLOS:	*			£									

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #9 Carmel Valley Road/Laureles Grade ***************** Average Delay (sec/veh): 23.9 Worst Case Level Of Service: F ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour Final Vol.: 0 0 0 149 0 226 269 434 168 Critical Gap Module: Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1417 xxxx 444 612 xxxx xxxxx xxxx xxxx xxxxx Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx 230.6 xxxx 14.1 10.1 xxxx xxxxx xxxxx xxxx xxxxx LOS by Move: * * * F * B B * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT 100.4 ApproachDel: xxxxxx

F

ApproachLOS:

AdjDel/Veh: 0.0 0.0 0.0 23.2 0.0 30.7 30.6 4.1 0.0 0.0 12.6 8.4 DesignQueue: 0 0 0 3 0 5 6 5 0 0 12 5

Delay/Veh: 0.0 0.0 0.0 23.2 0.0 30.7 30.6 4.1

_ *******************

0.0 12.6

0.0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #9 Carmel Valley Road/Laureles Grade ****************** Critical Vol./Cap. (X): 0.615 Cycle (sec): 60 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 39 Level Of Service: **************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 Lanes:
 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 Volume Module: >> Count Date: 18 Dec 2002 << 2:30-3:30 PM Peak Hour 269 434 0 0 444 168 Final Vol.: 0 0 0 149 0 226 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.08 0.00 0.14 0.15 0.23 0.00 0.00 0.23 0.10 **** Crit Moves: Green/Cycle: 0.00 0.00 0.00 0.23 0.00 0.23 0.24 0.62 0.00 0.00 0.38 0.38 Volume/Cap: 0.00 0.00 0.00 0.36 0.00 0.61 0.61 0.37 0.00 0.00 0.61 0.27 DesignQueue: 0 0 0 4 0 6 7 6 0 0 10 4 ***************************

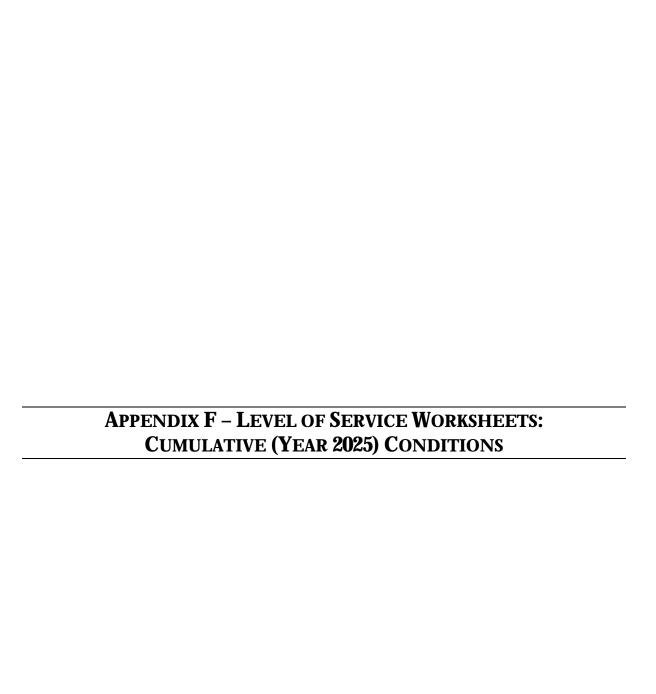
		;'								~		
				:-:								
		L	evel Of	Serv	ice C	omputat	tion Re	eport				
2	000 H	CM Op	eration	s Met	hod (Future	Volume	e Alt	ernativ	re)		1 4 5 1 4 4
*****							****	****	*****	*****	***	*****
Intersection	#10 H	ighwa	y 68/La	urele	s Gra	de				e de la companya de de de	والمسائلة علما	di di di di di di
******	****	****	*****	****								
Cycle (sec):		80				ritical					.88	
Loss Time (se	c):		(Y+R =	4 s					/ven):		24.	
Optimal Cycle	:	85			L	evel O	t Serv	ıce:	an ar ar ar ar ar ar	na ana ana ana ana ana an		C
********										West		
Approach:		th Bo			th Bo			st Bo		L -		
Movement:	Г	$^{\circ}\mathbf{T}$	- R	L -	\mathbf{T} .	- R	L -	T	- R			
							D			Prot	oct	ed.
Control:			ase					otect			ıclu	
Rights:		Inclu			Inclu			Inclu 0	0	.0	0	0
Min. Green:	0	0	.0	0	0	.0		0		1 0		0 0
Lanes:		0		0 0		0 0				or and a second		
						1	1			1		- 1
Volume Module			0.05	-	0	.0	0	606	137	242 11	160	0
Base Vol:	226	0	205	0	1 00	0 1.00	1.00		1.00	1.00 1		1.00
Growth Adj:	1.00		1.00	1.00		1.00	0	606	137	242 13		0
Initial Bse:	226	0	205	0	.0 .0	.0	0	0	137	53	0	0
Added Vol:	0	.0	71	0	0	0	0	0	.0	0	0	.0
PasserByVol:	0	0	0		0	0	0	606	137	295 1:		0
Initial Fut:	226	0	276	1.00		1.00	1.00		1.00	1.00 1		1.00
User Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00 1		1.00
PHF Adj:	1.00		1.00	1.00	1.00	0.00	1.00	606	137	295 1		0
PHF Volume:	226	0	276	0	0	0	.0	.00.0	0	0	0	0
Reduct Vol:	0	0	0 276	0	0	.0	10	606	137	295 1		0
Reduced Vol:	226	1 00	1.00	1.00		1.00	1.00		1.00	1.00 1		1.00
PCE Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00 1		1.00
MLF Adj:	1.00		276	1.00	0	0		606	137	295 1		0
Final Vol.:	226	.0										
	1			1			1			1		
Saturation F			1900	1.000	1900	1900	1900	1900	1900	1900 1	900	1900
Sat/Lane:		1900	0.85	1.00		1.00	1.00		0.85	0.95 1	.00	1.00
Adjustment:		1.00	1.00		0.00	0.00		1.00	1.00	1.00 1		0.00
Lanes:	1805	0.00	1615	0.00	0	0.00		1900	1615	1805 1		0
Final Sat.:							_					
						. 1	ļ		*I	1		•
Capacity Ana			0.17	0.00	0.00	0.00	0.00	0.32	0.08	0.16 0	.61	0.00
Vol/Sat:	0.13	0.00	****	0.00	0.00	0,.00	****		• • • •		***	
Crit Moves: Green/Cycle:	0 10	0.00	0.19	0.00	0.00	0.00	0.00	0.46	0.46	0.23 0	.69	0.00
Volume/Cap:		0.00	0.13		0.00	0.00		0.70	0.19	0.70 0		0.00
			31.3	0.0	0.0	0.0		17.2		28.0	9.7	0.0
Uniform Del:	4.1		23.7	0.0	0.0	0.0	0.0	2.5		5.0	7.2	0.0
<pre>IncremntDel: Delay Adj:</pre>		0.00	1.00		0.00	0.00		1.00		1.00 1		0.00
	33.8		55.1	0.0	0.0	0.0		19.7		33.0 1		0.0
Delay/Veh:			1.00		1.00			1.00		1.00 1		1.00
User DelAdj:	33.8		55.1	0.0				19.7		33.0 1		0.0
AdjDel/Veh: DesignQueue:	g	O	10	0	0	Ō	0	16	3	10	19	0
pesignQueue:	****	****	*****	****	****					*****	***	****

Ex+Prj+Pnd+Ap	pr PM	Peak	Tue	Aug 5	, 200	3 14:5	5:09 	_:		Pa 	ge 11	-1
		Le	vel Of	Servi	.ce Co	mputat	ion Re	port		· o 1		
2	000 HC	M Ope	ration	s Meth	od (F	uture	volume	AITE	rnaciv	<i>セ」</i> *****	****	****
ے ******	*****	****	****	*****	~ * * * *	**************************************	***					
Intersection ******	#10 Hi	ghway	68/La	ureles	Grac	le	والمراجع المراجع المراجع		*****	****	****	****
	*****		****	****	~~~~	itical	Tol /	Can	(Y) -		0.968	
Cycle (sec):	,	90	/37 . D	4 50	LT.	TUTCAL	Delaw	(sec	veh):		35.5	
Loss Time (se	C):		(Y+K)=	: 4 St	C) AV	vel Of	Servi	ice:	1011,		D)
Optimal Cycle ******	:	145	****	****	****	****	****	****	*****	*****	****	****
		h Bou				ınd		st Bou	ınd	Wes	st Bou	ına
Approach:	T	ጥ	. TD	T	ф.	- 1R	L -	т -	- R		Т -	
Movement: 			1							:		
Control	enli	+ Dha	1	ടവി	it Pha	ase	Pro	otect	ed	Pro	otecte	ed
Control: Rights:		Includ			Inclu	de		Inclu	de	4	Includ	le
Rights: Min. Green:		0		0		0	0	0	0	0	0	0
Tanec.	1 0	0 (1	0 0	0 (0. 0		1		1 0		
										1		
Volume Module			į s	1								_
Base Vol:	152	0	258	.0	0	0	0	1101	140	21	717	0
Growth Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
Initial Bse:	152	0	258	0	0	0	:0	1101	140	21	717	0
Added Vol:	0	0	89	.0	0	0	0	0	0	118	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:		0	347	0	0	, 0	0	1101	140	139	717	0
User Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Adj:	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Volume:	152	0	347	0	0	0	0	1101	140	139	717	0
Reduct Vol:	0	0	0	0	.0	0	0	0	.0	0	0	0
Reduced Vol:	152	0	347	0	0	0		1101	140	139	717	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00
Final Vol.:	152	0	347	0	0	0		1101	140	139	717	0
Saturation F	low Mo	dule:									1000	1900
Sat/Lane:	1900	1900	1900	1900		1900	1900		1900		1900	1.00
Adjustment:	0.95	1.00	0.85	1.00		1.00	1.00		0.85		1.00	0.00
Lanes:	1.00	0.00	1.00	0.00		0.00		1.00	1.00		1900	0.00
Final Sat.:	1805	.0	1615	0	:0	0	_	1900	1615			-
							1					
Capacity Ana	lysis	Modu]	e:			0 00	0 00	0	0.09	0 00	0.38	0.00
Vol/Sat:	0.08	0.00	0.21	0.00	0.00	0.00	0.00	0.58	0.09	****	0.50	0.00
Crit Moves:			****				0 00		0 .60		0.68	0.00
Green/Cycle:			0.22		0.00	0.00		0.60	0.60		0.56	0.00
Volume/Cap:	0.38		0.97		0.00	0.00		0.97	0.14	41.3		0.0
Uniform Del:		0.0	34.7	0.0	0.0	0.0		17.2	7.9			0.0
IncremntDel:		0.0	39.0	0.0	0.0	0.0		19.4			1.00	0.00
Delay Adj:		0.00	1.00		0.00	0.00		1.00		106.5		0.0
Delay/Veh:	30.4	0.0	73.7	0.0	0.0	0.0		36.6			1.00	1.00
User DelAdj:			1.00		1.00	1.00		1.00		106.5		0.0
AdjDel/Veh:	30.4	0.0	73.7	0.0		0.0		36.6				0.0
DesignQueue:	6	:0	14	:0	0	0	0	26	د. مدينونونونونونونونونونونونونونونونونونونو			

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ********************** Intersection #10 Highway 68/Laureles Grade Cycle (sec): 70 Critical Vol./Cap. (X): 0.844 9 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 70 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 0 Volume Module: 0 0 0 0 606 137 242 1160 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0 606 137 295 1160 Initial Bse: 226 0 205 0 0 Added Vol: 0 0 71
PasserByVol: 0 0 0
Initial Fut: 226 0 276 PHF Adj: PHF Volume: 226 0 276 0 0 0 0 606 137 295 1160 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 226 0 276 0 0 0 0 606 137 295 1160 0 Final Vol.: 226 0 276 0 0 0 0 606 137 295 1160 0 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.13 0.00 0.17 0.00 0.00 0.00 0.00 0.32 0.08 0.16 0.61 0.00 Crit Moves: ****

Green/Cycle: 0.15 0.00 0.39 0.00 0.00 0.00 0.00 0.48 0.48 0.25 0.72 0.00 Volume/Cap: 0.84 0.00 0.43 0.00 0.00 0.00 0.00 0.67 0.18 0.67 0.84 0.00 Uniform Del: 29.0 0.0 15.5 0.0 0.0 0.0 0.0 14.0 10.4 23.8 6.9

AdjDel/Veh: 50.1 0.0 16.0 0.0 0.0 0.0 15.9 10.5 27.7 11.9 0.0 DesignQueue: 8 0 7 0 0 0 0 13 3 9 15 0



Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #10 Highway 68/Laureles Grade ***************** Cycle (sec): 90 Critical Vol./Cap. (X): 0.883 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 23.9 Optimal Cycle: 90 Level Of Service: C ******************************** North Bound South Bound East Bound West Bound L - T - R L - T - R Approach: North Bound Movement:
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: PHF Volume: 152 0 347 0 0 0 0 1101 140 139 717 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 152 0 347 0 0 0 0 1101 140 139 717 0 Saturation Flow Module: Final Sat.: 1805 0 1615 0 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.21 0.00 0.00 0.00 0.00 0.58 0.09 0.08 0.38 0.00 **** *** Crit Moves: *** Green/Cycle: 0.16 0.00 0.24 0.00 0.00 0.00 0.06 0.66 0.66 0.09 0.74 0.00 Volume/Cap: 0.54 0.00 0.88 0.00 0.00 0.00 0.00 0.88 0.13 0.88 0.51 0.00 Uniform Del: 35.0 0.0 32.8 0.0 0.0 0.0 0.0 12.6 5.8 40.6 4.7 AdjDel/Veh: 37.1 0.0 53.0 0.0 0.0 0.0 0.0 20.3 5.9 80.4 5.0 0.0 DesignQueue: 7 0 14 0 0 0 0 22 2 6 10 0 *****************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #1 Highway 1/Carpenter Street ****************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.861 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 20.6 Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 0 1 0 0 1
 Volume Module: Base Vol: 51 2029 18 21 1972 329 441 10 14 40 25 Initial Bse: 51 2029 18 21 1972 329 441 10 14 40 25 83 Added Vol: 1 20 0 0 7 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 52 2049 18 21 1979 329 441 10 14 40 25 83 ______ Saturation Flow Module: 1.00 1.98 0.02 1.00 2.00 1.00 2.00 0.42 0.58 1.23 0.77 1.00 Lanes: Final Sat.: 1805 3763 33 1805 3800 1615 3610 723 1012 2268 1418 1615 Capacity Analysis Module: Vol/Sat: 0.03 0.54 0.54 0.01 0.52 0.20 0.12 0.01 0.01 0.02 0.02 0.05 *** *** Crit Moves: **** Green/Cycle: 0.03 0.63 0.63 0.01 0.60 0.60 0.14 0.14 0.14 0.06 0.06 0.06 DesignQueue: 2 37 0 1 38 6 16 0 1 2 1 3 ********************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #1 Highway 1/Carpenter Street ******************* Cycle (sec): 120 Critical Vol./Cap. (X): 1.070 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 53.5 Optimal Cycle:OPTIMIZED Level Of Service: ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - RControl: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 0 1 0 1 1 0 0 1 Volume Module: Final Vol.: 31 2683 32 41 2877 659 563 5 33 24 11 53 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.95 0.87 0.87 0.97 0.97 0.85 Lanes: 1.00 1.98 0.02 1.00 2.00 1.00 2.00 0.13 0.87 1.37 0.63 1.00 Final Sat.: 1805 3748 45 1805 3800 1615 3610 217 1436 2520 1155 1615 Capacity Analysis Module: Vol/Sat: 0.02 0.72 0.72 0.02 0.76 0.41 0.16 0.02 0.02 0.01 0.01 0.03 Crit Moves: **** **** Green/Cycle: 0.02 0.70 0.70 0.02 0.71 0.71 0.15 0.15 0.15 0.03 0.03 0.03 Volume/Cap: 1.07 1.02 1.02 1.02 1.07 0.58 1.07 0.16 0.16 0.31 0.31 1.07 Uniform Del: 59.0 17.9 17.9 58.7 17.5 8.7 51.3 44.8 44.8 56.9 56.9 58.2 IncremntDel:189.4 22.9 22.9 148.2 39.7 0.7 59.3 0.3 0.3 1.6 1.6 149.0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #1 Highway 1/Carpenter Street ***************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.840 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 14.0 Optimal Cycle:OPTIMIZED Level Of Service: В *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Prot+Permit
 Protected

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 51 2029 18 21 1972 329 441 10 14 40 25 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.36 0.36 0.01 0.52 0.20 0.14 0.01 0.01 0.02 0.01 0.05 **** **** Crit Moves: **** Green/Cycle: 0.03 0.61 0.61 0.02 0.60 0.74 0.26 0.07 0.07 0.11 0.05 0.07 DesignQueue: 2 32 0 1 33 3 14 0 0 1 1 3 ************************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #1 Highway 1/Carpenter Street ***************************** Cycle (sec): 120 Critical Vol./Cap. (X): 1.038
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 29.1
Optimal Cycle:OPTIMIZED Level Of Service: C Optimal Cycle:OPTIMIZED Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Prot+Permit
 Protected

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 2 1 0 1 0 2 0 1 2 0 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1
 Volume Module: 11 Base Vol: 30 2670 32 41 2854 659 563 5 24 32 Initial Bse: 30 2670 32 41 2854 659 563 5 32 24 11 Added Vol: 1 13 0 0 23 0 0 0 1 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 33 24 11 53 Saturation Flow Module: Adjustment: 0.95 1.00 1.00 0.95 1.00 0.85 0.78 0.87 0.87 0.95 1.00 0.85 Lanes: 1.00 2.96 0.04 1.00 2.00 1.00 2.00 0.13 0.87 1.00 1.00 1.00 Final Sat.: 1805 5622 67 1805 3800 1615 2980 217 1436 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.02 0.48 0.48 0.02 0.76 0.41 0.19 0.02 0.02 0.01 0.01 0.03 Crit Moves: **** *** ***

AdjDel/Veh: 236.4 10.1 10.1 82.8 45.0 1.8 39.2 50.6 50.6 55.2 351 115.6 DesignQueue: 2 59 1 3 65 6 33 0 2 2 1 3 *******************

Year 2025 - AM Tue Sep 2, 2003 13:52:28 Page 3-1 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #2 Highway 1/Ocean Avenue **************** Cycle (sec): 80 Critical Vol./Cap. (X): 0.936 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 31.7 Optimal Cycle:OPTIMIZED Level Of Service: ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Initial Bse: 179 1570 111 24 1350 684 376 84 39 113 51 Added Vol: 2 22 4 0 7 0 0 0 1 1 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.10 0.45 0.45 0.01 0.36 0.42 0.21 0.07 0.07 0.06 0.05 0.05 **** *** Crit Moves: **** Green/Cycle: 0.11 0.54 0.54 0.02 0.45 0.45 0.22 0.22 0.22 0.07 0.07 0.07 Volume/Cap: 0.94 0.83 0.83 0.83 0.79 0.94 0.94 0.31 0.31 0.94 0.72 0.72 Uniform Del: 35.4 15.2 15.2 39.3 18.6 20.8 30.5 26.0 26.0 37.1 36.6 36.6

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************ Intersection #2 Highway 1/Ocean Avenue ************* Cycle (sec): 120 Critical Vol./Cap. (X): 1.350 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 131.7 Optimal Cycle:OPTIMIZED Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: 212 170 84 116 471 734 247 Base Vol: 147 1711 12 2294 64 12 2294 471 734 247 212 170 84 116 Initial Bse: 147 1711 64 12 2294 471 734 247 212 170 84 116 Added Vol: 2 14 2 0 25 0 0 0 3 4 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 149 1725 66 12 2319 471 734 247 215 174 84 116 Reduct Vol: 0 0 0 0 0 0 0 0 0 Reduced Vol: 149 1725 66 12 2319 471 734 247 Saturation Flow Module: Adjustment: 0.95 0.99 0.99 0.95 1.00 0.85 0.95 0.93 0.93 0.95 0.91 0.91 Lanes: 1.00 1.93 0.07 1.00 2.00 1.00 1.00 0.53 0.47 1.00 0.42 0.58 Final Sat.: 1805 3638 139 1805 3800 1615 1805 945 822 1805 729 1006 Capacity Analysis Module: Vol/Sat: 0.08 0.47 0.47 0.01 0.61 0.29 0.41 0.26 0.26 0.10 0.12 0.12 *** **** Crit Moves: **** Green/Cycle: 0.06 0.51 0.51 0.01 0.45 0.45 0.30 0.30 0.30 0.09 0.09 0.09 Volume/Cap: 1.35 0.94 0.94 0.94 1.35 0.65 1.35 0.87 0.87 1.13 1.35 1.35 Uniform Del: 56.3 27.8 27.8 59.5 32.9 25.4 41.9 39.7 39.7 54.9 54.9 54.9

وروا والمراوي والمراو Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #2 Highway 1/Ocean Avenue ***************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.770 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound L - T - R Movement: L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Ovl Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 0 3 0 1 2 0 1 0 1 1 1 0 0 1 _____ Volume Module: 24 1350 684 376 84 39 113 51 36 Base Vol: 179 1570 111 Initial Bse: 179 1570 111 24 1350 684 376 84 39 113 51 36 Added Vol: 2 22 4 0 7 0 0 0 1 1 PasserByVol: 0 0 0 0 0 0 0 0 0
 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 0 Saturation Flow Module: Adjustment: 0.95 0.99 0.99 0.95 1.00 0.85 0.95 1.00 0.85 0.97 0.97 0.85 Lanes: 1.00 1.87 0.13 1.00 3.00 1.00 2.00 1.00 1.00 1.38 0.62 1.00 Final Sat.: 1805 3509 253 1805 5700 1615 3610 1900 1615 2539 1136 1615 ______ Capacity Analysis Module: Vol/Sat: 0.10 0.45 0.45 0.01 0.24 0.42 0.10 0.04 0.02 0.04 0.04 0.02 Crit Moves: **** **** ***

AdjDel/Veh: 32.1 11.0 11.0 101.9 11.6 10.9 32.4 24.2 23.4 43.5 43.5 27.6 DesignQueue: 5 25 2 1 26 10 11 2 1 4 2

Year 2025 - PM (Mit.) Tue Sep 2, 2003 13:58:20

		:-:-										
		:			-,-,-,-							
Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												
2000 HCM Operations Method (ruture volume Arternative)												
Intersection #2 Highway 1/Ocean Avenue												
*****	****	****	****	****	****	****	*********	****	****		0 000	3
Cycle (sec):		7.5	,		C	ritical	L Vol.,	/Cap.	(X):		0.908	
Loss Time (se	c):	12	(Y+R =	= 4 s	ec) A	verage	Delay	(sec	/veh):		28.	
Ontimal Cycle	TTOO	MIZET	1		T ₁	evel Of	E Serv	ice:			. (
********	****	****	****	****	****	*****	****	****	*****	****	***	***
_		th Bo			th Bo		Eas	st Bo	und	Wes	t Bo	und
Approach:				т	TT 20	_ D	ा. <u>-</u>	т	- R	L -	Т	- R
Movement:	L -	Ţ	- K	بيد	7	- K			1			
							0-3			enl-	+ Dh	256
Control:	Pr	otect	ed	Pr	otect	ea	Spr	it Pn	ase	phr.	O1	250
Rights:		Inclu	ıde		OAT			THCTU	.ue		047	
Min. Green:	0	0	0	0	0	0	0	_	0	0	0	0
Lanes:	1 0	1	1 0	1 0	3	0 1	2 0	1	0 1		0	
Volume Module			3	1		•						
Base Vol:		1711	64	12	2294	471	734	247	212	170	84	116
				1.00	1.0	1.00	1.00		1.00	1.00	1.00	1.00
	1.00		1.00			471	734	247	212	170	84	116
Initial Bse:		1711	64		2294			2 = 7	3	4	0	0
Added Vol:	2	14	2	0	25	0	0				0	Ö
PasserByVol:	0	0	0	0	0	0	0	0	.0	0		
Initial Fut:	149	1725	66	12	2319	471	734	247	215	174	84	116
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:		1725	66	12	2319	471	734	247	215	174	84	116
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		1725	66		2319	471	734	247	215	174	84	116
	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PCE Adj:			1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00
MLF Adj:		1.00				471		247	215		84	116
Final Vol.:		1725			2319							
				1			1			1		a a
Saturation F.	low Mo	odule						1000	1.0.00	1000	1000	1900
Sat/Lane:		1900	1900	1900	1900	1900	1900			1900		
Adjustment:	0.95	0.99	0.99	0.95	1.00	0.85	0.95			0.97		
Lanes:		1.93	0.07	1.00	3.00	1.00	2.00	1.00	1.00	1.35		
Final Sat .:	1805	3638	139	1805	5700	1615	3610	1900	1615	2478	1196	1615
Capacity Ana												
Vol/Sat:			0.47	0.01	0.41	0.29	0.20	0.13	0.13	0.07	0.07	0.07
	****	0.47	0.1	0.01	****	0.25	****			****		
Crit Moves:			0	0 01		0 67	ດ່າວ	0 22	0.22	0.08	0.08	0.08
Green/Cycle:				0.01	0.45					0.91		0.85
• •	0.91				0.91			0.58				
Uniform Del:	33.8	15.7	15.7		19.3			26.0		34.3		
IncremntDel:	44.6	5.5	5.5	188.1			14.0				30.7	
Delay Adj:	1.00	1.00			1.00			1.00			1.00	
Delay/Veh:	78.3	21.2	21.2	225.3	24.5	6.0	42.4	28.0		65.0		
User DelAdj:					1.00		1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	78.3			225.3			42.4	28.0	28.7	65.0	65.0	70.0
DogianOueue.	6	3.6	1	.0	6.0	7	25	.8	· 7	7	3	
*********	****	****	*****	*****	****	*****	*****	****	****	****	****	*****

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #3 Highway 1/Carmel Valley Road *************** 60 Critical Vol./Cap. (X): 0.853 Cycle (sec): Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 17.9
Optimal Cycle:OPTIMIZED Level Of Service: B ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 0 827 59 982 852 0 0 0 0 0 0 1045 Initial Bse: 0 827 59 982 852 0 0 0 0 0 0 1045 ______| Saturation Flow Module: Adjustment: 1.00 1.00 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.85 Final Sat.: 0 1900 1615 3610 1900 0 0 0 0 0 3230 ______| Capacity Analysis Module: Vol/Sat: 0.00 0.44 0.04 0.27 0.45 0.00 0.00 0.00 0.00 0.00 0.33 Crit Moves: **** ****

Green/Cycle: 0.00 0.51 0.51 0.32 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.39

Volume/Cap: 0.00 0.85 0.08 0.85 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.85 7.5 19.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 16.7 Uniform Del: 0.0 12.7 IncremntDel: 0.0 7.4 0.0 6.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 5.8 AdjDel/Veh: 0.0 20.1 7.5 25.3 1.9 0.0 0.0 0.0 0.0 0.0 22.6 DesignQueue: 0 15 1 24 5 0 0 0 0 0 0 ***********************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************ Intersection #3 Highway 1/Carmel Valley Road ************************* Cycle (sec): 105 Critical Vol./Cap. (X): 1.134
Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 77.1
Lovel of Service: E Optimal Cycle:OPTIMIZED Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 Lanes:
 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 Volume Module: Saturation Flow Module: Adjustment: 1.00 1.00 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.85 Capacity Analysis Module: Vol/Sat: 0.00 0.63 0.06 0.36 0.68 0.00 0.00 0.00 0.00 0.00 0.44 *** Crit Moves: **** AdjDel/Veh: 0.0 96.1 11.3 107.6 5.5 0.0 0.0 0.0 0.0 0.0 0.0 102.7 DesignQueue: 0 37 2 57 12 0 0 0 0 0 57 *************************

Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												

Intersection #3 Highway 1/Carmel Valley Road												
2-1												
Cycle (sec): 60 Critical Vol./Cap. (X): 0.632 Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 11.1 Optimal Cycle:OPTIMIZED Level Of Service: B												
Loss Time (se	C):) (1+K =	- 45	ec) r	verage	Deray	100.	y verry .			in in
Optimal Cycle	:OPTI	MIZEL)		I Table and State	ever or	. DELV	100:			+++*	****
		****	******	- X X X X X						We	a't Die	and.
Approach:			ound									
Movement:	L -	T	- R	L -	T	- R	. ь -	T	- R			- R
Control:	Pr	otect	ed	Pr	otect	:ed	Spl	it Ph	ıase	sp⊥	it Pr	ıase
Rights:		Inclu	iue		11101	146					-	
	0	0	0	0	0	0		0	0		0	
Lanes:	0 0	1	1 0	2 0	1	0 0	0 0	0	0 0	0 0	0	0 2
Volume Module			31 -	'		4	•					
Base Vol:		827	59	982	852	0	0	0	0	0	0	1045
Growth Adj:			1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:			59		852	0	0	0	0	0	0	1045
		027	3	9	0.52		0	0	0	0	0	28
Added Vol:	_			0	0		.0	o	ō	0	0	0
PasserByVol:	0	0	0		852		0	0	Ö	ō	0	1073
Initial Fut:		827	62							1.00		
User Adj:			1.00	1.00			1.00		1.00	1.00		1.00
PHF Adj:			1.00	1.00						0	0	1073
PHF Volume:		827	62	991	852		.0	0	0	0	0	1073
Reduct Vol:		0	0	0	0		0	0	0	0	0	
Reduced Vol:			62	991			0	0		1.00		
PCE Adj:				1.00				1.00				
	1.00			1.00				1.00		1.00		1.00
Final Vol.:	0	827	62		852		. 0			0		
											·	
Saturation Fl				1000	1.000	1900	1900	1000	1900	1900	1900	1900
Sat/Lane:		1900		1900				1.00				
Adjustment:				0.95				0.00		0.00		
Lanes:				2.00			0.00			0.00		
Final Sat.:	. 0	3500	262	3610								
Consite Ann				1			1		. 1	1		4
Capacity Ana. Vol/Sat:	TARIR	0 24	0 24	0 27	0.45	0 00	0.00	0.00	0.00	0.00	0.00	0.33
		***		****	0.43	0.00	0.00	0.00				***
Crit Moves:					0 01	0.00	0 00	0 00	0 00	0.00	0 00	0.53
Green/Cycle:	0.00	0.37	0.3/	0.43	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.63
Volume/Cap:		0.63		0.63			0.0	0.00	0.00	0.0	0.0	10.1
Uniform Del:		15.4		13.2	2.0		0.0	0.0	0.0	0.0	0.0	
IncremntDel:	0.0			0.8	0.4			0.00	0.00	0.00		
Delay Adj:		1.00			1.00							
Delay/Veh:		16.3		14.1			0.0		0.0	0.0	0.0	
User DelAdj:	1.00	1.00	1.00		1.00			1.00		1.00		
AdjDel/Veh:		16.3		14.1			0.0			0.0	0.0	
DesignQueue:	0	18	1	20	(5 0	0			0	0	
*****	****	****	*****	****	****	*****	****	****	*****	5 * * * * * * * * * * * * * * * * * * *	n. x = x = x	

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************************* Intersection #3 Highway 1/Carmel Valley Road **************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.872
Loss Time (sec): 6 (Y+R = 4 sec) Average Delay (sec/veh): 18.0
Optimal Cycle:OPTIMIZED Level Of Service: B ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Saturation Flow Module: Adjustment: 1.00 0.99 0.99 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.85 Capacity Analysis Module: Vol/Sat: 0.00 0.34 0.34 0.36 0.68 0.00 0.00 0.00 0.00 0.00 0.44 **** Crit Moves: **** Green/Cycle: 0.00 0.39 0.39 0.41 0.80 0.00 0.00 0.00 0.00 0.00 0.51 AdjDel/Veh: 0.0 22.9 22.9 22.2 8.4 0.0 0.0 0.0 0.0 0.0 0.0 18.4 DesignQueue: 0 26 2 28 10 0 0 0 0 0 26

Year 2025 - AM Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #4 Highway 1/Rio Road ************** Cycle (sec): 60 Critical Vol./Cap. (X):
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle:OPTIMIZED Level Of Service: Critical Vol./Cap. (X): 0.837 ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 2 0 0 1 0 1 0 1 1 0 1 0 1 Volume Module: 33 335 582 107 195 303 43 153 315 171 Base Vol: 41 474 Initial Bse: 41 474 33 335 582 107 195 303 43 153 315 171 Added Vol: 0 3 0 0 0 0 0 1 0 7 4
PasserByVol: 0 0 0 0 0 0 0 0 0 0
Initial Fut: 41 477 33 335 582 107 195 304 43 160 319 0 7 4 0 0 0 .0 O 171 Saturation Flow Module: 1.00 1.00 1.00 2.00 0.84 0.16 1.00 1.75 0.25 1.00 1.00 1.00 Lanes: Final Sat.: 1805 1900 1615 3610 1568 288 1805 3266 462 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.02 0.25 0.02 0.09 0.37 0.37 0.11 0.09 0.09 0.09 0.17 0.11 **** *** Crit Moves: **** Green/Cycle: 0.03 0.34 0.34 0.13 0.44 0.44 0.13 0.17 0.17 0.16 0.20 0.20 Volume/Cap: 0.84 0.73 0.06 0.73 0.84 0.84 0.84 0.55 0.55 0.55 0.84 0.53 Uniform Del: 29.1 17.3 13.2 25.2 14.8 14.8 25.5 22.9 22.9 23.2 23.0 21.4 IncremntDel: 71.0 4.2 0.0 5.9 7.5 7.5 22.5 1.1 1.1 2.3 14.9 1.6 AdjDel/Veh: 100.1 21.5 13.2 31.1 22.3 22.3 48.0 23.9 23.9 25.5 38.0 23.1

DesignQueue: 1 11 1 10 12 2 6 9 1 5 9

فالما والواف والمورو والواو والمواوي والمواوية Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************************** Intersection #4 Highway 1/Rio Road ****************** Cycle (sec): 110 Critical Vol./Cap. (X): 1.093
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 87.9
F Critical Vol./Cap. (X): 1.093 Optimal Cycle:OPTIMIZED Level Of Service: ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 Lanes:
 1 0 1 0 1 2 0 0 1 0 1 0 1 0 1 0 1 0 1
 Volume Module: Initial Fut: 147 896 94 419 738 131 165 497 42 236 560 471 PHF Volume: 147 896 94 419 738 131 165 497 42 236 560 471 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.47 0.06 0.12 0.47 0.47 0.09 0.14 0.14 0.13 0.29 0.29 **** Crit Moves: **** *** Green/Cycle: 0.08 0.43 0.43 0.11 0.46 0.46 0.08 0.18 0.18 0.17 0.27 0.27 Volume/Cap: 1.02 1.09 0.13 1.09 1.02 1.02 1.09 0.78 0.78 0.78 1.09 1.08 DesignQueue: 8 36 3 24 28 5 9 26 2 12 27 22 *******************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************ Intersection #4 Highway 1/Rio Road ************************ Cycle (sec): 60 Critical Vol./Cap. (X): 0.630 Cycle (sec):

Loss Time (sec):

12 (Y+R = 4 sec) Average Delay (sec/veh): 21.0 Optimal Cycle:OPTIMIZED Level Of Service: C ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 2 0 2 0 1 1 0 1 1 0 1 0 1 0 1
 1 0 1 0 1 0 1
 _____ Volume Module: Base Vol: 41 474 33 335 582 107 195 303 43 153 315 171 Initial Bse: 41 474 33 335 582 107 195 303 43 153 315 171 Saturation Flow Module: Lanes: 1.00 1.87 0.13 2.00 2.00 1.00 1.00 1.75 0.25 1.00 1.00 1.00 Final Sat.: 1805 3519 243 3610 3800 1615 1805 3266 462 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.02 0.14 0.14 0.09 0.15 0.07 0.11 0.09 0.09 0.09 0.17 0.11 *** Crit Moves: **** **** **** **** **** Green/Cycle: 0.05 0.22 0.22 0.15 0.32 0.32 0.17 0.22 0.22 0.21 0.27 0.41 Volume/Cap: 0.49 0.63 0.63 0.63 0.49 0.21 0.63 0.42 0.42 0.42 0.63 0.26 Uniform Del: 27.9 21.4 21.4 24.0 16.6 15.1 23.1 19.9 19.9 20.4 19.4 11.5 *** 1.6 2.4 0.3 0.2 4.1 0.3 0.3 0.7 2.6 0.2 IncremntDel: 4.3 1.6 DesignQueue: 1 13 1 10 14 2 6 8 1 4 8 3

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #4 Highway 1/Rio Road ************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.925
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 34.7
Optimal Cycle:OPTIMIZED Level Of Service: C ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Ovl

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 1 1 0 2 0 2 0 2 0 1 1 0 1 1 0 1 0 1
 1 0 1 0 1 0 1
 Volume Module: Saturation Flow Module: 1.00 1.81 0.19 2.00 2.00 1.00 1.00 1.84 0.16 1.00 1.00 1.00 Lanes: Final Sat.: 1805 3391 356 3610 3800 1615 1805 3462 293 1805 1900 1615 Capacity Analysis Module: Vol/Sat: 0.08 0.26 0.26 0.12 0.19 0.08 0.09 0.14 0.14 0.13 0.29 0.29 **** *** Crit Moves: **** Green/Cycle: 0.12 0.29 0.29 0.13 0.29 0.29 0.10 0.22 0.22 0.20 0.32 0.44

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard ******************* Critical Vol./Cap. (X): 0.524 Cycle (sec): 60 Cycle (sec): 60

Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: Initial Bse: 124 7 311 24 12 40 74 749 258 549 900 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 Initial Fut: 124 7 314 24 12 40 74 761 258 565 928 48 Reduced Vol: 124 7 314 24 12 40 74 761 258 565 928 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.04 0.19 0.02 0.02 0.02 0.04 0.20 0.16 0.16 0.24 0.03 **** **** Crit Moves: Green/Cycle: 0.07 0.07 0.37 0.05 0.05 0.05 0.10 0.38 0.38 0.30 0.58 0.58 Volume/Cap: 0.50 0.50 0.52 0.41 0.41 0.52 0.42 0.52 0.42 0.52 0.42 0.05 Uniform Del: 26.8 26.8 14.7 27.8 27.8 27.9 25.5 14.3 13.6 17.5 6.9

Ingrempt Del: 1.5 1.5 0.9 3.2 3.2 6.5 1.6 0.4 0.5 0.5 0.1 DesignQueue: 4 0 7 1 0 1 2 17 6 14 14 ***********************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #5 Carmel Valley Road/Carmel Rancho Boulevard ************ Cycle (sec): 70 Critical Vol./Cap. (X): 0.910 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 30.8 Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: 16 Initial Bse: 477 24 645 31 18 39 179 1186 446 644 948 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.14 0.14 0.40 0.03 0.03 0.02 0.10 0.32 0.28 0.18 0.25 0.01 **** Crit Moves: Green/Cycle: 0.25 0.25 0.44 0.03 0.03 0.03 0.16 0.35 0.35 0.20 0.40 0.40 Volume/Cap: 0.56 0.56 0.91 0.91 0.91 0.91 0.83 0.64 0.91 0.78 0.91 0.64 0.02 Uniform Del: 23.1 23.1 18.1 33.9 33.9 33.8 27.7 21.5 20.2 27.4 17.0 12.8 IncremntDel: 0.8 0.8 15.7 90.0 90.0 69.2 4.9 9.4 6.8 15.7 0.9 Delay/Veh: 23.9 23.9 33.8 123.9 124 103.0 32.6 30.9 26.9 43.1 17.9 12.8

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************* Intersection #6 Carmel Valley Road/Rancho San Carlos Road ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.828 Cycle (sec): 60

Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
 Movement:
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 <t Volume Module: _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.00 0.04 0.00 0.00 0.00 0.06 0.08 0.04 0.57 0.00 *** Crit Moves: **** Green/Cycle: 0.16 0.00 0.16 0.00 0.00 0.00 0.00 0.62 0.62 0.07 0.69 0.00 Volume/Cap: 0.83 0.00 0.24 0.00 0.00 0.00 0.58 0.13 0.58 0.83 0.00 AdjDel/Veh: 42.1 0.0 22.5 0.0 0.0 0.0 0.0 7.5 4.8 33.8 11.3 0.0 DesignQueue: 7 0 2 0 0 0 0 10 2 2 13 0 **********************

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #6 Carmel Valley Road/Rancho San Carlos Road *********************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.922 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Split Phase Split Phase Protected Protected Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 Volume Module: Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.09 0.00 0.04 0.00 0.00 0.00 0.00 0.69 0.17 0.05 0.36 0.00 Crit Moves: **** Green/Cycle: 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.75 0.75 0.06 0.81 0.00 Volume/Cap: 0.92 0.00 0.40 0.00 0.00 0.00 0.00 0.92 0.23 0.92 0.45 0.00 3.8 112.4 3.1 0.0 AdjDel/Veh: 89.3 0.0 43.6 0.0 0.0 0.0 0.0 20.1 3.8 112.4 3.1 0.0 DesignQueue: 9 0 3 0 0 0 0 22 4 5 8 0 *************************

0 0 14

Year 2025 - AM (Mit.) Tue Sep 2, 2003 13:56:41 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #7 Carmel Valley Road/Brookdale Drive ***************** 105 Critical Vol./Cap. (X): 0.704 Cycle (sec): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 8.8 Optimal Cycle:OPTIMIZED Level Of Service: ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 0 PHF Volume: 7 0 5 19 0 43 15 726 3 3 1079 6 Reduct Vol: 0 5 19 0 43 15 726 3 3 1079 0 0 7 0 6 Saturation Flow Module: Lanes: 0.58 0.00 0.42 0.31 0.00 0.69 1.00 0.99 0.01 1.00 0.99 0.01 Final Sat.: 1017 0 726 520 0 1176 1805 1890 8 1805 1888 10 Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.01 0.04 0.00 0.04 0.01 0.38 0.38 0.00 0.57 0.57 **** Crit Moves: **** Uniform Del: 51.8 0.0 51.8 49.0 0.0 49.0 51.7 2.7 2.7 52.2 4.3 4.3 IncremntDel: 83.9 0.0 83.9 22.6 0.0 22.6 71.3 0.2 0.2 45.7 1.5 AdjDel/Veh: 135.8 0.0 135.8 71.6 0.0 71.6 123.0 3.0 3.0 97.9 5.8

DesignQueue: 0 0 0 1 0 2 1 8

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #7 Carmel Valley Road/Brookdale Drive ******************* Cycle (sec): 120 Critical Vol./Cap. (X): 0.789
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 10.0 Optimal Cycle:OPTIMIZED Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: 0 0 0 3 743 Base Vol: 5 0 0 1283 7 4 Initial Bse: 5 0 4 0 0 0 1283 7 3 743 Added Vol: 0 0 0 12 0 28 50 0 0 0 Saturation Flow Module: Adjustment: 0.91 1.00 0.91 0.89 1.00 0.89 0.95 1.00 1.00 0.95 1.00 1.00 Lanes: 0.56 0.00 0.44 0.30 0.00 0.70 1.00 0.99 0.01 1.00 0.97 0.03

Final Sat.: 965 0 772 509 0 1187 1805 1888 10 1805 1840 52 Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.01 0.02 0.00 0.02 0.03 0.68 0.68 0.00 0.40 0.40 Crit Moves: **** **** **** AdjDel/Veh: 210.7 0.0 210.7 113.5 0.0 113.5 58.9 6.3 6.3 349.9 4.0

DesignQueue: 0 0 0 1 0 2 3 14 0 0 11 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #8 Carmel Valley Road/Dorris Drive *********************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.540
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 7.2
Optimal Cycle:OPTIMIZED Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Volume Module: 0 509 160 57 750 0 0 0 Base Vol: 111 0 32 PHF Adj: PHF Volume: 112 0 32 0 0 0 0 525 163 57 755 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.00 0.02 0.00 0.00 0.00 0.08 0.10 0.03 0.40 0.00 *** Crit Moves: **** Volume/Cap: 0.54 0.00 0.17 0.00 0.00 0.00 0.00 0.42 0.15 0.42 0.54 0.00 Uniform Del: 25.1 0.0 24.0 0.0 0.0 0.0 0.0 4.8 3.9 26.5 3.5 0.0 IncremntDel: 2.9 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.1 2.1 0.4 0.0 0.0 0.0 0.0 0.0 5.0 3.9 28.6 3.9 0.0 Delay/Veh: 27.9 0.0 24.4 AdjDel/Veh: 27.9 0.0 24.4 0.0 0.0 0.0 5.0 3.9 28.6 3.9 0.0 DesignQueue: 3 0 1 0 0 0 6 2 2 7 *************** *****

Year 2025 - PM (Mit.) Tue Sep 2, 2003 13:58:20 Page 9-1 Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #8 Carmel Valley Road/Dorris Drive ****************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.587
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 8.3 Optimal Cycle:OPTIMIZED Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 Lanes:
 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
 Volume Module: Base Vol: 136 0 49 0 0 0 0 724 279 63 583 Saturation Flow Module: Final Sat.: 1805 0 1615 0 0 0 1900 1615 1805 1900 0 Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.03 0.00 0.00 0.00 0.00 0.39 0.17 0.03 0.32 0.00 *** *** Crit Moves: **** Green/Cycle: 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.66 0.66 0.06 0.72 0.00 Volume/Cap: 0.59 0.00 0.23 0.00 0.00 0.00 0.00 0.59 0.26 0.59 0.44 0.00 Uniform Del: 24.5 0.0 23.3 0.0 0.0 0.0 0.0 5.7 4.2 27.5 3.5 0.0 IncremntDel: 3.8 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.7 0.1 8.2 0.2 0.0 DesignQueue: 4 0 1 0 0 0 0 9 3 2 6

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

*************** Intersection #9 Carmel Valley Road/Laureles Grade ****************** 60 Critical Vol./Cap. (X): 0.592 Cycle (sec): Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 13.1 Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Volume Module: Base Vol: 0 0 0 121 0 166 157 353 0 0 581 234 Initial Bse: 0 0 0 121 0 166 157 353 0 0 581 234 _____ Saturation Flow Module: Lanes: 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 Final Sat.: 0 0 0 1805 0 1615 1805 1900 0 0 1900 1615

Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.07 0.00 0.10 0.09 0.19 0.00 0.00 0.31 0.14 Crit Moves: Crit Moves: Green/Cycle: 0.00 0.00 0.00 0.18 0.00 0.18 0.16 0.67 0.00 0.00 0.52 0.52 Volume/Cap: 0.00 0.00 0.00 0.38 0.00 0.59 0.59 0.28 0.00 0.00 0.59 0.28 0.0 21.8 0.0 22.7 23.6 3.9 0.0 0.0 10.1 8.1 Uniform Del: 0.0 0.0 0.0 0.8 0.0 3.3 3.4 0.1 0.0 0.0 1.0 0.2 IncremntDel: 0.0 0.0 Delay Adj: 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 Delay/Veh: 0.0 0.0 0.0 22.6 0.0 26.0 26.9 4.1 0.0 0.0 11.0 8.3 AdjDel/Veh: 0.0 0.0 0.0 22.6 0.0 26.0 26.9 4.1 0.0 0.0 11.0 DesignQueue: 0 0 0 3 0 5 5 4 0 0 10

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to TJKM, PLEASANTON, CA

Year 2025 - P	M (Mi	t.)									
		L€	evel Of	Serv	ce co	mputat	TON RE	DOLL *	~~~+ i **	e.)	
.2	000 H	CM Ope	eration	s Meti	iod (F	uture	volume	ALCE	rnativ	_, *********	****
	****	*****	*****	*****	*********						
Intersection	#9 Ca	rmel V	/alley	Road/I	_aurel	es Gra	ide		+++++	*****	***
	****						77-7	/Can	(X):	0.564	Į.
Cycle (sec):		60		_	CI	ritical	Dela.,	(cap.	(A)	16 (
Loss Time (se				: 4 S	ec) Av	rerage	ретау	(sec)	VC11) .	15.4	a a
Optimal Cycle ******	:OPTI	MIZED			Ъ€	evel Oi	Serv.	rce:		*****	
*****	****	****	*****	****	****		י מי מי מי מי מי מי ייים	- Po	ınd	West Bo	ınd
Approach:	Nor	th Bo	und	Sou	tn Boi	ına	Ea:	st bo	- R		
Movement:	L -	T	- R	L -	T	- R	- ц	.1 .	- K		
Movement:							D			Protecti	-d -d
Control:	Pr	otect	ed	Pr	otecte	ea	PI	5.e66.	zu Za	Inclu	de
Rights:		THULLU	ue		111014		0			0 0	
Min. Green:			.0					.0	0 o	0 0 1	
Lanes:	0 0	0	0 0	1 0	0 4	ט 1	1 1 0	т :	ויטיט	- <u> ا</u>	
eanes:							1				
Volume Module						0.10	000	202	0	0 373	203
Base Vol:	0	0	0	261	0	210	237		_	1.00 1.00	1.00
Growth Adj:	1.00	1.00		1.00		1.00			1.00	0 373	203
Initial Bse:	0	.0	0	261	0	210	237	382	0	0 7	203
Added Vol:	0	0	0	0	0	11	6	4	0	•	.0
PasserByVol:	:0	0	0	0	0	0	0	0	0		203
Initial Fut:	0	0	0	261	0	221	243	386	0	0 380	
User Adj:			1.00	1.00		1.00		1.00	1.00	1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00 1.00	203
PHF Volume:	0	0	0	261	0	221	243	386	0	0 380	203
Reduct Vol:	0	0	0	0	0	0	0	0	0	0 0	
Reduced Vol:	0	0	Ó	261	0	221		386	0	0 380	203
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00			1.00		1.00
mi	0	0	0	261	0	221	243	386		0 380	203
rinal voi.:											
Saturation F											
Sat/Lane:		1900	1900	1900		1900		1900			1900
Adjustment:	1.00	1.00	1.00	0.95	1.00	0.85		1.00		1.00 1.00	0.89
Lanes:		0.00		1.00	0.00	1.00		1.00		0.00 1.00	1.00
Final Sat.:	0	0	0	1805	0	1615	1805	1900	0	0 1900	1619
rinai sat.:											
Capacity Ana	lysis	Modu]	e:								
Vol/Sat:		0.00	0.00	0.14	0.00	0.14		0.20	0.00	0.00 0.20	U.1.
Crit Moves:				***			****			****	
Green/Cycle:	0.00	0.00	0.00	0.26	0.00	0.26		0.59	0.00	0.00 0.35	0.3
Volume/Cap:		0.00	0.00		0.00	0.53		0.34	0.00	0.00 0.56	0.3
Uniform Del:		0.0	0.0	19.4	0.0	19.2	20.1	6.2	0.0	0.0 15.6	14.
IncremntDel:		0.0	0.0	1.6	0.0	1.4	1.7	0.2	0.0	0.0 1.1	
Delay Adj:		0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.00 1.00	
Delay/Veh:	0.0	0.0	0.0	21.0	0.0	20.6	21.8	6.4	0.0	0.0 16.7	
User DelAdj:			1.00		1.00	1.00	1.00	1.00	1.00	1.00 1.00	
AdjDel/Veh:	0.0	0.0	0.0	21.0	0.0	20.6	21.8	6.4	0.0	0.0 16.7	
DogianOueue.	'n	-0	o.	7	0	-6	6	6	.0	0 9	
				والمتراطة والمراطة والمراطة	والمعارض المعارض	+++++	*****	****	****	****	****

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************** Intersection #10 Highway 68/Laureles Grade ***************** Optimal Cycle:OPTIMIZED Level Of Service: C ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____ Volume Module: 276 0 0 0 0 606 137 295 1213 Base Vol: 275 0 ______ Saturation Flow Module: Adjustment: 0.95 1.00 0.85 1.00 1.00 1.00 1.00 0.85 0.95 1.00 1.00 Capacity Analysis Module: Vol/Sat: 0.15 0.00 0.18 0.00 0.00 0.00 0.00 0.32 0.08 0.17 0.64 0.00 **** Crit Moves: **** *** AdjDel/Veh: 41.4 0.0 62.4 0.0 0.0 0.0 0.0 19.0 12.3 31.5 21.3 0.0 DesignQueue: 10 0 10 0 0 0 15 3 10 19

				-,							
		L	evel 0	f Serv	ice C	omputat	ion R	eport			
2	000 H	CM Op	eration	ns Metl) bon	Future	Volume	e Alt	ernativ	ve)	
*****	****	****	****	****	****	*****	****	****	****	*****	****
Intersection	#10 H	lighwa	v 68/L	aurele	s Gra	de					
	***					ritical	บา	/Can	(Y) ·	1.13	
Cycle (sec):		115	,		ب: ح∴ د	ricica.	D-1	/cap.	(m).	67	
Loss Time (se				= 4 S	ec) A	verage	ретау	, sec	/veii/:	30 7	.E
Optimal Cycle	:OPTI	MIZED)		Ţ	evel O	: Serv	ice:		والمقارعون وفالمعارض والرازان والروازان	

Approach:	Nor	th Bo	und					st Bc	und	West Bo	
Movement:	L -	T	- R	L -	$^{\circ}\mathrm{T}$	- R	L -	T	- R	L - T	- R
Control:	Spl	it Ph	ase	Spl	it Ph	ase	Pr	otect	ed	Protec	ted
Control:	_	Inclu	de	· -	Inclu	ıde		Inclu	de	Incl	ude
Min. Green:	0	0	0	0	0	0	0	-0	0	0 0	10
Lanes:			0 1			0 0	0 0	1	0 1	1 0 1	0 0
			1	1						1,_,_,_,	
Volume Module			. 4	d		4	ı		- 1	'n	
Base Vol:	152	0	408	0	0	Ö	n	1258	475	217 1030	0
Growth Adj:			1.00	1.00		1.00	1.00			1.00 1.00	1.00
·-				0	0	0		1258	475	217 1030	
Initial Bse:		0	408			0	0	0	0	11 0	
Added Vol:	0	0	6	0	0		0	.0	0	0 0	
PasserByVol:	0		.0	0	0	0			475	228 1030	
Initial Fut:		10	414	0	0	0		1258		1.00 1.00	
User Adj:	1.00		1.00			1.00					
PHF Adj:	1.00		1.00	1.00		1.00	1.00			1.00 1.00	
PHF Volume:	152	0	414	0	0	10		1258	475	228 1030	
Reduct Vol:	0	0	0	0	0	.0	0	0	0	0 0	
Reduced Vol:		0	414	0	0	0		1258			
PCE Adj:	1.00	1.00	1.00	1.00							
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00					
Final Vol.:	152	0	414	0	.0		0		475		
Saturation F	low Mo	odule	:								
Sat/Lane:	1900	1900	1900	1900	1900	1900					
Adjustment:	0.95	1.00	0.85	1.00	1.00	1.00	1.00	1.00			
Lanes:		0.00	1.00	0.00	0.00			1.00			
Final Sat.:	1805	0	1615	0	0	0	.0	1900	1615		0
		,,_,									
Capacity Ana				AI .			· ·				
			0.26	0.00	0.00	0.00	0.00	0.66	0.29	0.13 0.5	1 0.00
Crit Moves:			****					***		***	
Green/Cycle:	0.23	0.00	0.23	0.00	0.00	0.00	0.00	0.58	0.58	0.11 0.70	0.00
Volume/Cap:		0.00	1.13	0.00	0.00	0.00	0.00	1.13	0.50	1.13 0.7	в 0.00
Uniform Del:			44.5	0.0	0.0	0.0		23.9		51.1 11.	
IncremntDel:	0.6		88.5	0.0	0.0	0.0		71.6		104.0 3.	
Delay Adj:		0.00	1.00		0.00			1.00		1.00 1.0	
Delay Adj: Delay/Veh:	38.2			0.0	0.0	0.0		95.5		155.1 14.	
					1.00			1.00		1.00 1.0	
User DelAdj:				0.0	0.0			95.5		155.1 14.	
AdjDel/Veh:	38.2		133.0 22	0.0	0.0		0.0	41		13 2	
DesignQueue:	8	0	22 *****	*****	****	*****					
~ ^ ^ ^ ^ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	" " " " " " " " " " " " " " " " " " "										

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #10 Highway 68/Laureles Grade

******************* Cycle (sec): 70 Critical Vol./Cap. (X): 0.907 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh):

Optimal Cycle:OPTIMIZED Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

 Control:
 Split Phase
 Split Phase
 Protected
 Protected

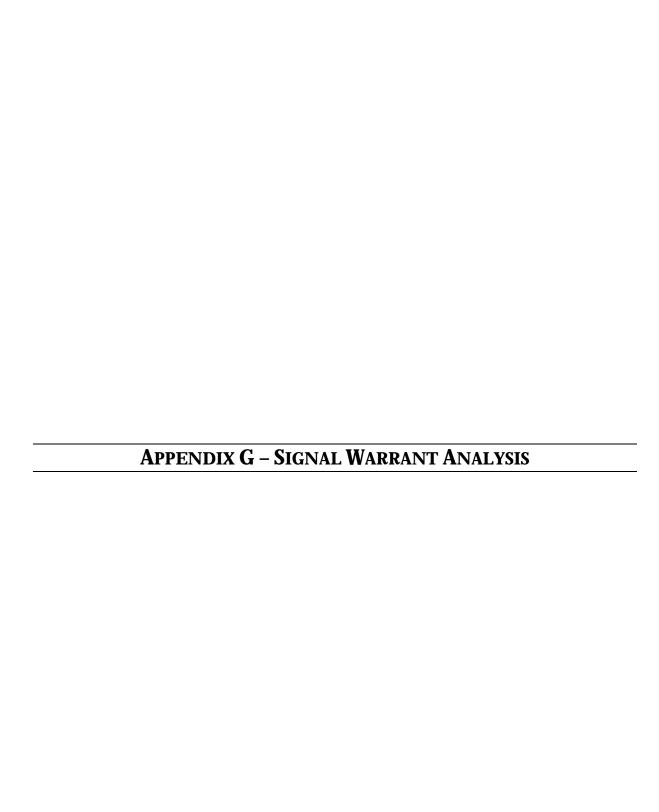
 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: 275 0 276 0 0 0 0 606 137 295 1213 Base Vol: Initial Bse: 275 0 276 0 0 0 0 606 137 295 1213 0 0 0 0 3 0 298 1213 Ω

Saturation Flow Module:

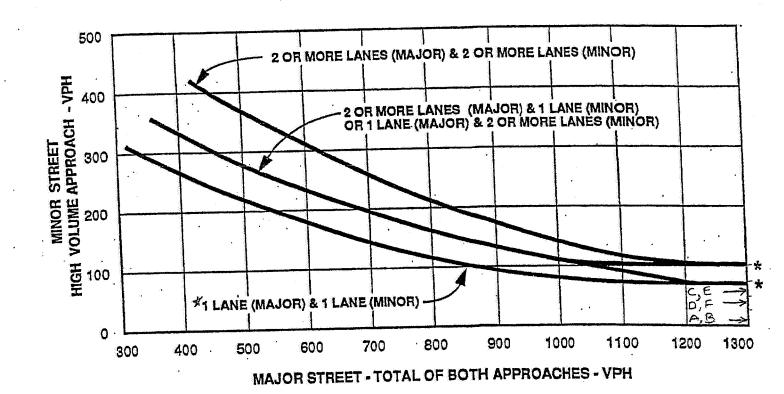
Adjustment: 0.95 1.00 0.85 1.00 1.00 1.00 0.97 0.97 0.95 1.00 1.00 Lanes: 1.00 0.00 1.00 0.00 0.00 0.00 1.63 0.37 1.00 1.00 0.00 Final Sat.: 1805 0 1615 0 0 0 0 3013 681 1805 1900 0 -----|


Capacity Analysis Module:

Vol/Sat: 0.15 0.00 0.18 0.00 0.00 0.00 0.00 0.20 0.20 0.17 0.64 0.00 Crit Moves: **** **** Green/Cycle: 0.17 0.00 0.49 0.00 0.00 0.00 0.00 0.39 0.39 0.32 0.70 0.00 Volume/Cap: 0.91 0.00 0.36 0.00 0.00 0.00 0.00 0.52 0.52 0.52 0.91 0.00 0.0 0.0 16.5 16.5 19.5 8.5 0.0 0.0 0.0 0.3 0.3 0.9 9.2 0.0 Uniform Del: 28.6 0.0 11.3 0.0 0.0 IncremntDel: 29.2 0.0 0.3 0.0 0.0

Delay Adj: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 Delay/Veh: 57.8 0.0 11.6 0.0 0.0 0.0 0.0 16.8 16.8 20.4 17.7 0.0 AdjDel/Veh: 57.8 0.0 11.6 0.0 0.0 0.0 0.0 16.8 16.8 20.4 17.7 0.0 DesignQueue: 9 0 6 0 0 0 0 15 3 8 17 ************* Year 2025 - PM (Mit.) Tue Sep 2, 2003 13:58:20 Page 11-1 ما فالمالية والمواوية والم ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************ Intersection #10 Highway 68/Laureles Grade ************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.861
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 18.4
Optimal Cycle:OPTIMIZED Level Of Service: B ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Initial Bse: 152 0 408 0 0 0 1258 475 217 1030 0 Added Vol: 0 0 6 0 0 0 0 0 0 0 0 11 0 0 PasserByVol: 0 0 414 0 0 0 0 1258 475 228 1030 0

Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.26 0.00 0.00 0.00 0.00 0.48 0.48 0.13 0.54 0.00 **** **** *** Crit Moves:


DesignQueue: 4 0 10 0 0 0 0 21 8 7 12 0 *****************

7-199

Figure 9-9 PEAK HOUR VOLUME WARRANT (Rural Areas)

Intersection #7 - Carmel Valley Road Brookdale Dive

A - EXISTING - AM PEAK

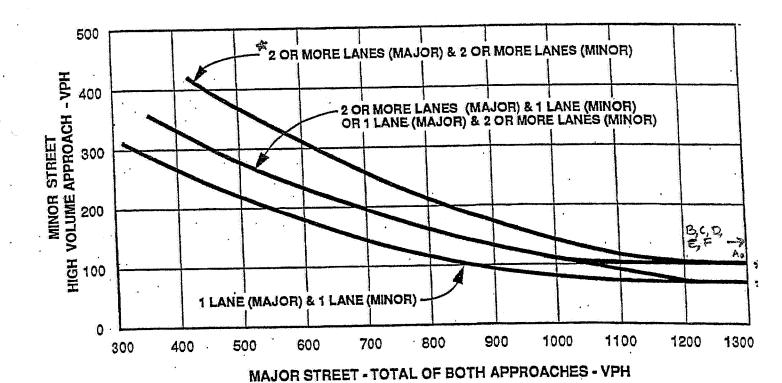
* NOTE: 100 VPH APPROAC

THRESHO

B- BYISTING - PM PERK

C- EXISTING + PROJECT - AM

D- BISTING + PROJECT - PM

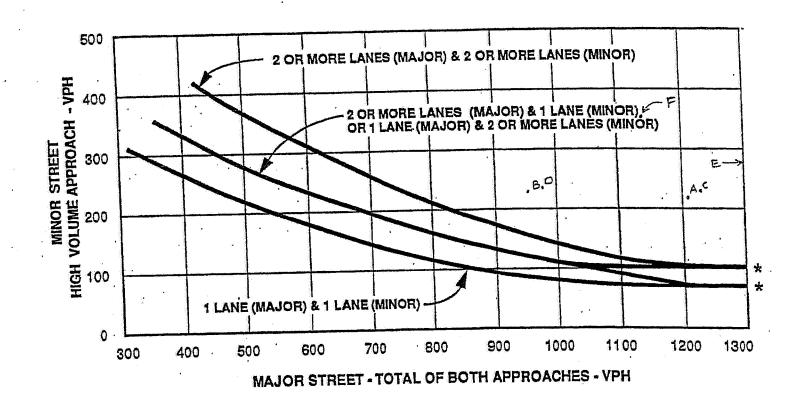

FOR A MINOR STREET PLIES AS THE LOWER ING WITH ONE LANE.

E - CUMULATIVE - AM

J- CUMULATIVE - PM

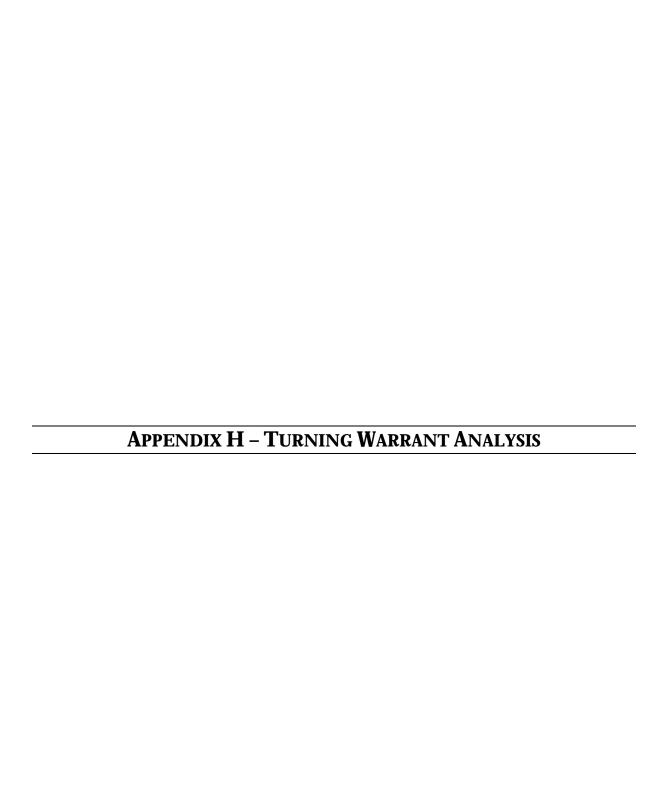
Figure 9-9 PEAK HOUR VOLUME WARRANT (Rural Areas)

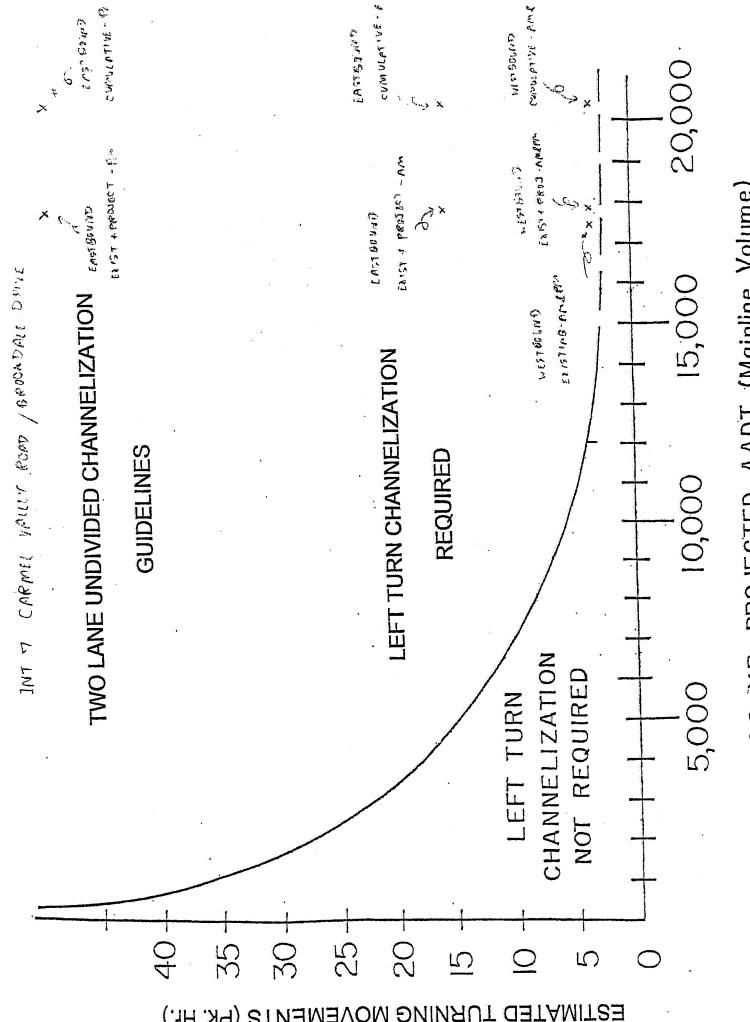
Intersection #8 - Carmel Valley Road/Dorvis Drive

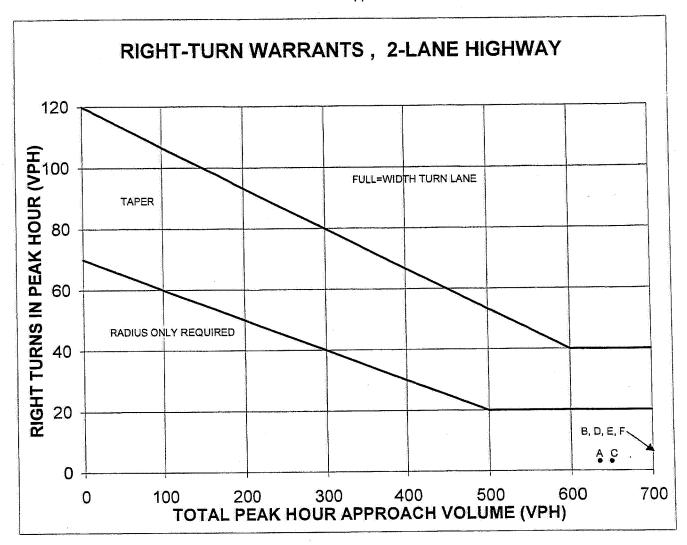

* NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

7-1996

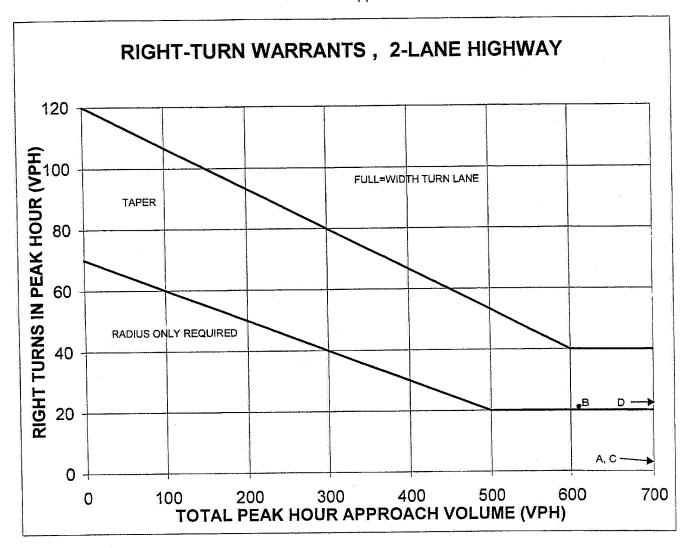

Figure 9-9 PEAK HOUR VOLUME WARRANT (Rural Areas)


Intersection #9- Carmel Valley Road / Laureles Grade


* NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

20 YR. PROJECTED AADT (Mainline Volume)


-	Scenario	Total	Right-Turning	Warrant Met?	
Α	Existing - AM	634	3	No	
В	Existing - PM	1157	7	No	
С	Ex+Project AM	649	3	No	
D	Ex+Project PM	1207	7	No	
Ε	Cumulative AM	744	3	No	
F	Cumulative PM	1340	7	No	

Source: Transportation Research Board, "Intersection Channelization Guide", NCHRP Report 287, November, 1985, p. 64.

Note: For posted speeds at or under 45 mph, peak hour right turns greater than 40 vph, and total peak hour approach less than 300 vph, adjust right turn volumes.

Adjust peak hour right turns = peak hour right turns - 20.

Intersection #7 - Carmel Valley Road/Brookdale Drive Westbound Approach

	Scenario	Total	Right-Turning	Warrant Met?	
Α	Ex+Project AM	1011	6	No	
В	Ex+Project PM	610	21	Taper	
c	Cumulative AM	1088	6	Nο	
D	Cumulative PM	767	21	Taper	

Source: Transportation Research Board, "Intersection Channelization Guide", NCHRP Report 287, November, 1985, p. 64.

Note: For posted speeds at or under 45 mph, peak hour right turns greater than 40 vph, and total peak hour approach less than 300 vph, adjust right turn volumes.

Adjust peak hour right turns = peak hour right turns - 20.