TODAY'S PRESENTATION

Ground Water Conditions in the Salinas Valley: Ground Water Level and Seawater Intrusion Information For 2011

Presentation Outline

- Introduction
- Background Information
- 2011 Ground Water Level Information
- 2011 Seawater Intrusion Information
- Summary

Introduction

- Presenters
 - Robert Johnson
 - Howard Franklin
 - Kathleen Thomasberg
- Combined Agency Experience > 60 years
- Presenting Ground Water Level and Seawater Intrusion Information

Background Information

- Where does our water come from?
- Local Issue / Local Solution
- Why does the Agency collect these data?

27 August 201: Page 5

Board of Directors Meeting Monterey County Water Resources Agency

Surface Water Supplies of Monterey County

Groundwater is the Primary Source of Supply and Storage

Local Issue / Local Solution

- Seawater intrusion in the Salinas Valley
 - First documented mid 1930s
 - State study completed in 1946
 - Strategy developed by MCFC&WCD / SVWAC
 - Monterey County Flood Control & Water Conservation District (pre-cursor to Agency)
 - Salinas Valley Water Advisory Committee

Local Issue / Local Solution (cont.)

- Solution Strategy:
 - (A) Develop a new water source
 - (B) Move water north to reduce need for coastal pumping
 - (C) Stop pumping along the coast
- Agency has implemented the following:
 - Nacimiento and San Antonio Reservoirs (A)
 - Monterey County Water Recycling Projects (C)
 - Salinas Valley Water Project (B)

Why collect these data?

- Monitoring can measure effectiveness and success of project(s)
- Ground water level data programs / output
 - Monthly / Quarterly Conditions Reports
 - Annual / Map
 - August Trough / Map
- Seawater intrusion data program / output
 Summer sampling / Map

Why collect these data? (cont.)

- Monitoring activities covered by Proposition 218 for SVWP
- Monitoring governed by objectives of SVWP
 - Stop Seawater Intrusion
 - Provide adequate water supplies to meet current and future (2030) needs

Why collect these data? (cont.)

Salinas Valley – complex hydrogeologic system

27 August 2012 Page 13

Board of Directors Meeting Monterey County Water Resources Agency

Why collect these data? (cont.)

- Data necessary to evaluate success of SVWP
- Research has shown that success of these types of projects is measured in decades
 - Meaningful evaluation after 10 years of operation

Salinas Valley Ground Water Level Contour Maps

August 2011 Fall 2011

Overview of Data Program

- GWL Data collected and analyzed since 1947
- Data collected to:
 - Monitor health of basin
 - Evaluate effectiveness of Agency projects
- GWL Data Programs
 - Monthly:
 - Fall (Annual):
 - August Trough:
 - Pressure Transducers:

94 wells 403 wells 130 wells 23 wells

GWL Contour Maps

- 2011 August Trough Contours:
 - Map 1
 - Pressure 180-Foot Aquifer
 - East Side Shallow
 - Map 2
 - Pressure 400-Foot Aquifer
 - East Side Deep

GWL Contour Maps (cont.)

- 2011 Fall Contours:
 - Map 3 (north and south)
 - Pressure 180-Foot Aquifer
 - East Side Shallow
 - Forebay Aquifer
 - Upper Valley Aquifer
 - Map 4
 - Pressure 400-Foot Aquifer
 - East Side Deep

Summary

Comparing 2011 data to 2009 data...

- GWLs have increased 5 to 10 feet on average, throughout the Salinas Valley
- Near the coast: GWLs increased in the Pressure 400-Foot Aquifer in August but were otherwise unchanged
- The zero contour line has migrated down valley approximately 2-3 miles
- In some cases, troughs have disappeared, in others, although deeper, the areal extent has decreased
- The mechanism for seawater intrusion persists

Coastal Salinas Valley Seawater Intrusion Maps 500 mg/L Chloride Contours 2011

Seawater Intrusion Data

- Coastal Groundwater Quality Monitoring
 - -Wells
 - Sampled annually peak pumping season
 - 90 Agricultural wells sampled 2-3 times
 - 17 Dedicated monitoring wells sampled

Test for General Minerals – indicators of intrusion

Seawater Intrusion Data (cont.)

- WQ Tested Annually
 - General Mineral indicators for intrusion
 - Chloride Concentrations
 - Secondary Upper Limit CA Safe Drinking Water Act (500mg/L)
- Contour Odd Years
 - -2007, 2009, 2011, etc.

Seawater Intrusion Data (cont.)

- Data Development Process
 - Multiple datasets
 - Water quality
 - Well construction
 - Well pumping
 - Ground water level contours
 - Data Analysis
 - Suite of software tools

Seawater Intrusion Data (cont.)

- Data Evaluation
 - Historical Chloride Trends
 - Secondary Upper Limit CA Safe Drinking Water Act 500mg/L
 - Stiff and Piper Diagrams
 - Anion / Cation Shifts

Chloride Time Series Indicating Possible Intrusion

No Intrusion - 1982

Stiff Diagrams (general mineral fingerprint) Well 14S/-2E

Early Intrusion - 2009

Board of Directors Meeting Monterey County Water Resources Agency

2011 Pressure 180-Foot Aquifer 500 mg/L Chloride Areas

Pressure 180-Foot Aquifer Historical Advancement

Pressure 180-Foot Aquifer Historical Advancement

2011 Pressure 400-Foot Aquifer 500 mg/L Chloride Areas

Pressure 400-Foot Aquifer Historical Advancement

Pressure 400-Foot Aquifer Historical Advancement

27 August 2012 Page 45

Board of Directors Meeting Monterey County Water Resources Agency

Summary 2011 Intrusion – 500 mg/L Chloride

- Rate of seawater intrusion continues to decrease
- The complex mechanism for seawater intrusion continues to persist

Summary

- Provided background information
- Ground Water Levels (2011 to 2009)
 - August:
 - In general, GWLs are up
 - Zero line moved 3 miles down valley
 - Fall:

27 August 2012

Page 47

- GWLs stabilized up valley from Soledad
- GWLs increasing down valley from Soledad
- Zero line moved 2 miles down valley

Summary (cont.)

- Seawater Intrusion (2011 to 2009)
 - Rate of SWI continues to decrease
 - Advancement minimal, lobes are broadening
 - Complex SWI mechanism persists
- Ground water levels are up, rate of Seawater Intrusion is decreasing
- Too early to call "Project Suite" successful

TODAY'S PRESENTATION

Ground Water Conditions in the Salinas Valley: Ground Water Level and Seawater Intrusion Information For 2011

